Printed Pages : 4

ECE-504
(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 100504

Roll No. \square

B. Tech.

(SEM. V) (ODD SEM.) THEORY
EXAMINATION, 2014-15
STRUCTURE ANALYSIS - II
Time : $\mathbf{3}$ Hours]
[Total Marks : 100
Note: Attempt all questions.

1. Attempt any TWO parts of the following: $\mathbf{1 0 x} \mathbf{2}=\mathbf{2 0}$
(a) Analyze the beam given in fig: 1 by slope deflection method and draw BMD.

FIG : 1
(b) Draw the bending moment diagram and shear force diagram for the continues beam shown in fig 2.Using moment distribution method. EI is constant.

Fig 2
(c) Analyze the following continues beam fig 3 . using the strain energy method.

Fig. 3
2. Attempt any Two parts of the following:
$10 \times 2=20$
(a) Explain Muller Breslau principle. Using the principle draw the influence line diagram for reaction R_{A} for the beam shown in the following fig 4 . Compute the ordinate at 1 m interval. The flexural rigidity is constant throughout

Fig. 4
(b) Draw the schematic diagrams for horizontal thrust, bending moment at any section, radial shear and normal thrust at any given section for a typical two- hinged symmetrical parabolic arch.
(c) Derive the influence diagram for reactions and bending moment at any section of a simply supported beam. Using the ILD, determine the support reactions and find bending moment at $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6 m .for a simply supported beam of span 8 m subjected to three point loads of $10 \mathrm{KN}, 15 \mathrm{KN}$ and 5 KN placed at $1 \mathrm{~m}, 4.5 \mathrm{~m}$ and 6.5 m respectively.
3. Attempt any TWO questions of following: $\quad 10 \times 2=\mathbf{2 0}$
(a) A suspension cable of span 20 m and central dip 2 m is carrying a UDL of $20 \mathrm{KN} / \mathrm{m}$. Find the horizontal pull in the cable Also find the maximum and minimum tensions is the cable.
(b) A foot bridge is carried over a river of span 90 m . the supports are 3 m and 12 m higher than the lowest point of the cable. Determine the length of the cable. If the horizontal deck is located by UDL of $20 \mathrm{KN} / \mathrm{M}$, find the tension in the cable.
(c) The cables of a suspension bridge have a span of 40 m and a dip of 5 m . Each cable is stiffened by a girder hinged at the ends and at mid span to enable to cable to maintain its parabolic shape. AUDL of $10 \mathrm{KN} / \mathrm{m}$ over the whole span and a live load of $30 \mathrm{KN} / \mathrm{m}$ over 10 m length in central part. Determine the maximum cable tension when the head of the live load is on the central hinge. Calculated maximum S.F and B.M at a section 10 m from the left end.
4. Attempt any TWO questions of the following $10 \times 2=20$
(a) Analyse the following continues beam (fig 5) using the flexibility of stiffness method of matrix analysis.
A

(Constant: EI)
Fig: 5
(b) Analyze the continuous beam shown in fig 6 by stiffness method. Draw bending moment diagram and elastic curve.

(c) Analyse the continuous beam shown in fig 7 using flexibility method and draw BMD.

FIG 7
100504]
3
[Contd...
5. Attempt any TWO questions of the following: $10 \times 2=20$
(a) Define shape factor and obtain its value for T-section with the following dimention shown in the fig 8 . If the yield stress is $250 \mathrm{~N} / \mathrm{mm}^{2}$. Find M_{p}.

(b) Determine the plastic moment capacity Mp for the frame shown in fig 9 given below:

(Constant: EI)
Fig. 9
(c) Derive the shape factor of Rectangular section, triangular section and circular section.

