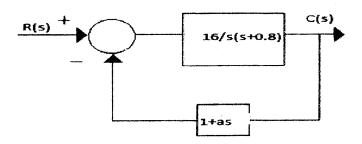
Printed Pages : 4	209/232	EEE-502/NEE-503
(Following Paper I	D and Roll No. Answer Bool	
Paper ID : 121522/1	21503 Roll No.[
	D Took	

(SEM. V) THEORY EXAMINATION, 2015-16 **CONTROL SYSTEM**

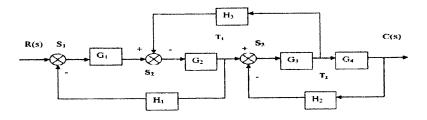

[MaximumMarks: 100 Time: 3 hours

Section-A

Note: Attempt all sections. All sections carry equal marks. Write answer of each part in short. $(2 \times 10 = 20)$

- Explain open loop and closed system with physical (a) examples.
- State the necessary & sufficient condition of (b) Routh Hurwitz criterion.
- Explain the significances of constant M & N (c) circles.
- What is the need of compensation in control (d) system?
- Draw the polar plot of open loop transfer function (e)

- (f) What are state and state variables?
- (g) Consider the system as shown in Fig Determine the value of 'a' such that the damping ratio is 0.5.


- (h) Define Rise time & Delay time for second order control system.
- (i) Explain Mason's gain formula.
- (j) Define the term Centroid & Break Away point.

Section-B

Note: Attempt any five questions of the following.

$$(10 \times 5 = 50)$$

2. Determine the transfer function C(s)/R(s) for the block diagram shown in Fig. below

- 3. Derive the expression for step response of second order control system for under-damped.
- 4. Using Routh's stability criterion, determine the range of K open loop transfer function

$$G(s)H(s) = \frac{K}{s(s+1)(1+2s)}$$

5. Construct Root loci for open loop transfer function:

$$G(S)H(S) = \frac{K}{S(S+1)(S+3)}$$

- 6. Derive expression for resonant frequency and resonant peak for second order control system.
- 7. Sketch the Nyquist plot for the system with open loop transfer function

$$G(s)H(S) = \frac{60}{(s+1)(s+2)(s+5)}$$
 and comment on stability.

- 8. Write short notes on PD controller and Synchros.
- 9. Obtain state equation of a given transfer function"

(3)

a)
$$\frac{Y(s)}{U(s)} = \frac{1}{s^3 + 2s^2 + 3s + 1}$$

b)
$$\frac{Y(s)}{U(s)} = \frac{1}{(s+1)(s+4)}$$

Section-C

Note: Attempt any two questions of the following.

$$(15 \times 2 = 30)$$

10. For a unity feedback system, the open loop transfer function is

$$G(s)H(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$$

Draw Bode Plot and determine gain margin, phase margin,

$$\omega_{gc}$$
 and ω_{pc} .

11. A system characterised by the transfer function

$$\frac{Y(s)}{u(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}$$
 Find the state and output

equation in matrix from and also test the controllability and observability of the given system.

- 12. Write short notes of the following:
 - (a) Lead compensator
 - (b) Lag compensator
 - (c) Gain Margin and Phase Margin