Prin	ited Pages: 5	367	FEE 501
		11	EEE 501
(Following Paper ID and Roll No. to be filled in your Answer Book)			
Pape	r ID : 121521	Roll No.	
B.Tech.			
(SEM. V) THEORY EXAMINATION, 2015-16			
ELECTROMECHANICAL ENERGY CONVERSION-II			
[Time:3 hours]			[MaximumMarks:100
SECTION-A			
Note: Attempt <u>all</u> parts. All parts carry equal marks. Wranswer of each part in short. $(2\times10=2)$			
(a)	Why the power factor of the lightly loaded induction mechine is quite low?		
(b)	What do you understand by the term cogging?		
(c)	Calculate the speed in rpm of a 6 pole induction motor which has a slop of 6% at full load with a supply frequency of 50 Hz. What will be the speed of a 4 pole alternator supplying the motor?		
(d)	Give application areas of the cylindrical and salient pole type synchronous machine.		
(e)	Why in case of three phase synchronous machine, the		
EEE 501		(1)	P.T.O.

armature windings put on stator and field windings put on rotor wheras in case of DC machine, the armature windings put on rotor and field windings put on stator poles?

- (f) Draw the V-curves and inverted V-Curves at different loading conditions of synchronous motor.
- (g) Define slip. Why the induction motor can't run at synchronous speed?
- (h) What are the reasons for the Hunting phenomenon in synchronous machines?
- (i) State some important application of the stepper motors.
- (j) How will you reverse the direction of rotation of the single phase Induction motor?

SECTION-B

Note: Attempt any five questions from this sections.

 $(10 \times 5 = 50)$

Q2. Shor that in a 3 phase induction motor.

$$\frac{\tau \max}{\tau fl} = \frac{1}{2} \frac{\beta^2 + sfl^2}{\beta sfl}$$

$$where \beta = \frac{R_2}{X_{20}}$$

Q3. A 3-phase, 400 V, 50 Hz induction motor take the power input of 35 kW at its full load speed of 890 rpm. The stator losses are 1 kW and friction and windage losses are 1.5 kW. Calculate (i)slip, (ii)Rotor ohmic loss(iii) Shaft power(iv) Shaft Torque(v) Efficiency

- Q4. From the first principles derive the equivalent circuit of a three phase induction motro. How the mechanical load is separated from rotor copper loss in the quuivalent circuit.
- Q5. Explain the phenomenon of armature reaction when alternator is delivering a load current at purely leading and purely lagging power factor. Also derive the eMF equation of an alternator.
- Q6. Derive Torque, Mechanical Power and rotor output equations of a three phase induction motor connected from AC mains.
- Q7. Define the term voltage regulation, for the synchronous generator. Determine the voltage regulation of a 2000 V, single phase alternator giving current of 100 A at (i) 0.8 pf leading and 0.707 pg lagging. Use the test data given below: Full load current of 100A is produced on short circuit by a field excitation of 2.5A. An EMF of 500 V is generated on open circuit by the same excitation. The armature resistance being 0.8Ω
- Q8. Why single phase induction motor is not self started? discuss the different methods of starting a 1-phase Induction motor.
- Q9. A 230 V, 50Hz, 4-pole single-phase induction motor has the following equivalent circuit impedances:

$$R_{1m} = 2.2 \text{ ohm}, X_{1m} = 3.1 \text{ ohm}, R2' = 4.5 \text{ ohm},$$

 $X2' = 2.6 \text{ ohm}, X_{M} = 80 \text{ ohm}$

Friction, windage and core loss=40W.

For a slip of 0.03 pu, calculate:

- i. Input current
- ii. Power factor
- iii. Developed power
- iv. Output power
- v. Efficiency

SECTION-C

Note: Attempt any two parts of the following:

 $(2 \times 15 = 30)$

- Q10. (a) State the necessary conditions for parallel operation of alternators. Discuss two bright and one dark lamp method of synchronizing alternators.
 - (b) A 5000kVA, 10000V, 1500rpm, 50 Hz alternator runs in parallel with other machine. Its synchronous reactance is 20% Find for (a) No-Load,(b)Full load at p.f. 0.8 Lagging, synchronizing power per unit mechanical angle of face displacement and calculate the synchronizing torque if mechanical displacement is 0.5 degree.
- Q11. (a) What are the effects of space harmonics in 3 phase induction motors?
 - (b) The standsstill impedances of outer and inner cages of a double cage induction motors are $(C+j1.2)\Omega$ and $(0.5+j3.5)\Omega$ respectively. Determine the slip at which the 2 cages develop equal torques.

- Q12. Discuss the construction detail & working Principle fo the following:
 - a) Stepper Motors
 - b) Universal Motors
 - c) Shaded Pole type Induction Motor.

—X—