Printed Pages: 68 NEC-508
(Following Paper ID and Roll No. to be filled in your Answer Book)
Paper ID: 131505 Roll No.
B.TECH.
(SEM. V) THEORY EXAMINATION, 2015-16
FUNDAMENTALS OF E.M. THEORY
[Time:3 hours] [Total Marks:100]
Section-A
Note: All questions are compulsory.
1. Attempt all parts. All parts carry equal marks. Write answers of all part in short. (10x2=20)
(a) State Stokes theorem.
(b) Give the application of cross product.
(c) Find gradient of $W = 2\rho^3 z \cos 2\phi$.
(d) What is Lorentz force?
(e) What is an equipotential surface?
8800 P.T.O.

**

- (f) Define Scalar magnetic potential.
- (g) State Poynting Theorem.
- (h) Define Convection current.
- (i) Write the Maxwell equation in differential and integral form for static magnetic fields.
- (j) Give the relation between Magnetic field and Magnetic flux density?

Section-B

Attempt any five questions from this section. (5x10=50)

- 2. Given the potential $V = \frac{10}{r^2} \sin \theta \cos \phi$. Find the electric flux density D at $\left(2, \frac{\pi}{2}, 0\right)$.
- 3. State and explain Maxwell's equations for electrostatics and magnetostatics. Discuss its physical significance.
- 4. Prove the vector triple product identity AXBXC = B(A.C)-C(A.B). Evaluate div (curl A) if $A = \frac{\sin \phi}{r^2} a_r \frac{\cos \phi}{r^2} a_{\phi}.$

8800

(2)

NEC-508

- 5. Explain the pehnomenon of polarization and explain its types.
- 6. State Coulomb's law. Derive an expression for electic field intensity due to line charge density ρ_{i} .
- 7. Derive the expression of reflection and transmission coefficients for normal incidence. Derive the relation between the two.
- 8. Find the magnetic field intensity due to infinitely long charged wire as an application of Ampere circuital law.
- 9. Find the value of α (attenuation), β (Phase Constant) for good conductors. Find out the angle of characteristic impedence for good conductors.

Section-C

Attempt any two questions from this section. (2x15=30)

10. Discuss the solution of plane wave equation in conducting media (Lossy Dielectric). Derive the above up to propagation constant, attenuation constant and phase constant.

- Define propagation constant and characteristic impedace.
 Derive the boundary conditions for electric field between two dielectrics having different permittivity interfaces.
- 12. Find the expression for α , β , γ for lossless or perfect dielectric medium. A 10 GHz plane wave travelling in free space has an amplitude of $E_x=10V/m$. find V, β , λ , η and the amplitude of H.

(4)

8800

NEC-508