Printed Pages: 4

NEC-508

(Following Paper ID and Roll No. to be filled in your Answer Books)	
Paper ID : 2012381	Roll No.

B.TECH

Regular Theory Examination (Odd Sem - V), 2016 - 17 FUNDAMENTALS OF E.M. THEORY

Time : 3 Hours

Max. Marks: 100

Section - A

Attempt all parts. All parts carry equal marks.Write answer of each part in short.(10×2=20)

- 1. a) Given two vectors $\vec{A} = 4f_y + 10f_z$ and $\vec{B} = 2f_x + 3f_y$. Find the projection of \vec{A} on \vec{B} .
 - b) Given $\vec{A} = 5f_x 2f_y + f_z$, find the expression of a unit vector f_B such that f_B is parallel to \vec{A} .
 - c) Transform the vector $4f_x 2f_y 4f_z$ into spherical coordinates at a point P(x = -2, y = -3, z = 4).
 - d) A charge $Q_2 = 121 \times 10^{-9}$ c is located in vacuum at $P_2(-0.03, 0.01, -0.04)$. Find force on Q_2 due to $Q_1 = 100 \ \mu c$ at $P_1(0.03, 0.08, 0.02)$. All distances in meters.
 - e) Find the stored energy in a system of four identical charges Q = 2nc, at the corners 1m on a side.

508/12/2016/5600

[P.T.O.

NEC-508

- f) What happens when a solid conductor is placed in an electric field?
- g) Define Polarization.
- h) Explain electric susceptibility.
- i) Write and explain differential form of Faraday's law.
- j) Explain the significance of displacement current.

Section - B

Attempt any five questions from this section

(5×10=50)

- 2. Write and explain integral and differential form of Maxwell's equations.
- 3. A lossless dielectric medium has $\sigma = 0$, $\mu_r = 1$ and $\varepsilon_r = 4$. An electromagnetic wave has magnetic filed components expressed as

$$\vec{\mathrm{H}} = -0.1\cos\left(wt - z\right)f_x + 0.5\sin\left(wt - z\right)f_y\frac{A}{m}$$

Find

- a) Phase constant β .
- b) Angular velocity.
- c) The wave impedance.
- d) Electric field intensity.
- 4. What do you understand by skin effect? Define skin depth. Show that in case of a semi-infinite solid conductor, the

skin depth S is given by $S = \sqrt{\frac{2}{w\mu\sigma}}$.

508/12/2016/5600

5. Show that for uniform plane wave in a perfect medium,

 \vec{E} and \vec{H} are normal to each other and the ratio of their magnitude is constant of the medium.

- 6. State and explain Biot-Savart's law for static magnetic fields as applied to different types of current distributions.
- 7. State and explain Ampere's law both in integral and differential form as used in magnetic field.
- 8. State and explain Gauss's law of electromagnetics in integral form.
- **9.** Derive Poisson's and Laplace's equations from fundamentals.

Section - C

Attempt any two questions from this section (2×15=30)

- 10. A total charge of 40 nc is uniformly distributed over a circular disc lying in xy plane with its centre at the origin (0, 0, 0). Find the potential at point (0, 0, 5)m.
- 11. Magnetic field intensity in free space is given by $\vec{H} = 20(xf_x + yf_y)/(x^2 + y^2) A/m$

a) Show that $\vec{\nabla}.\vec{B} = 0$

b) Find the current density \vec{J} .

508/12/2016/5600

(3)

[P.T.O.

- c) Find the scalar vector potential $V_m(x, y, z)$ if $V_m = 0$ at P(1, 1, 1).
- **12.** Can a static magnetic field exist in the interior of a perfect conductor? Explain.

Can a time varying magnetic filed exists in the interior of a perfect conductor? Explain.
