Printed pages: 02

Sub Code: NEC508

Paper Id: 3030

Roll No.

B.TECH. (SEM V) THEORY EXAMINATION 2017-18 FUNDAMENTALS OF ELECTROMAGNETIC THEORY

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

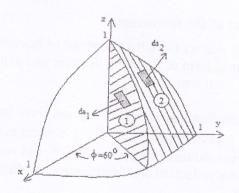
SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a) Given Vector $A = 5a_x-2a_y+a_z$ Find the expression of a unit vector a_B such that a_B is parallel to Vector A.
- b) Explain Faraday's Law.
- c) Define electric dipole moment.

d) What are dielectrics? Briefly explain its types.


- e) State and explain Coulomb's inverse square law in electrostatics. What is the direction of electrical force between two point charges?
- f) What are the types of magnet? State the properties of magnetic flux lines. Use suitable diagrams if required.
- g) What is loss Tangent? Define loss angle.
- h) What is Displacement current?
- i) Write the expressions for energy stored in a magnetic field?
- j) Write the expression for transformer's EMF.

SECTION B

2. Attempt any three of the following:

 $10 \times 3 = 30$

a) Use spherical coordinate to find the area of part of the sphere marked 1 and 2 in figure given below. Dimensions are marked in diagram.

- b) Explain and derive the electrostatic boundary conditions for conductor-free space interface.
- c) State and explain Biot-Savart's law. Derive a relation for the force between two conductors carrying currents I₁ and I₂.

- d) A uniform plane wave propagating in a medium has $E = 2e^{-\alpha z} \sin(10^8 t \beta z)$ ay V/m. If the medium is characterized by $\varepsilon_r = 1$, $\mu_r = 20$, and $\sigma = 3$ S/m, find α , β , and **H**.
- e) Write and explain Maxwell's equations in integral and differential form.

SECTION C

3. Attempt any two parts of the following:

 $5 \times 2 = 10$

- a) State and prove Stoke's theorem.
- b) Explain Gradient, Divergence and Curl. With expression in Different Coordinate system.
- c) State & prove Divergence Theorem.

4. Attempt any one part of the following:

 $10 \times 1 = 10$

(a) Derive an expression for the electric field due to an infinite sheet carrying uniform charge of charge density ρ_s on x-y plane.

(b) (i) An electric Field at a point P expressed in cylindrical Coordinate system is Given by E = 6r²sinφ a_r + 2r²cosφ a_φ Find the value of divergence of the field if the location of point P is given by (5,5,5) in Cartesian Coordinate.

(ii) Express B=10/r $a_r + r \cos \theta \ a_\theta + a_\phi$ into cylindrical co-ordinates at (5, $\pi/2$, -2)

5. Attempt any one part of the following:

 $10 \times 1 = 10$

- (a) State Ampere's circuital law. Using Ampere's circuital law, find the magnetic field intensity produced by an infinitely long filament carrying a current.
- (b) Derive a relation to determine the energy present in an assembly of charges, hence derive electrostatic energy density in joules per cubic meter.

6. Attempt any one part of the following:

 $10 \times 1 = 10$

- a) Derive the expression for α and β in a conducting medium. Explain the terms skin effect and depth of penetration.
- b) A circular loop located on $x^2 + y^2 = 9$, z = 0 carries a direct current of 10 A along a_0 . Determine **H** at (0, 0, 4) and (0, 0, -4).

7. Attempt any one part of the following:

 $10 \times 1 = 10$

- (a) What is Poynting vector? Give the statement of Poynting theorem and Drive the formula for integral form of Poynting theorem and explain the physical interpretation of each term.
- (b) Consider the reflection phenomena of a plane wave travelling through a medium of permittivity ε_1 and permeability μ_1 is incident normally to the surface of a prefect dielectric medium with permittivity ε and permeability μ_2 . Derive the expression for the reflection and transmission coefficients for the electric and magnetic fields.