Printed Pages: 02				Subject Code: REE503									
Pa	per Id:	120503		Roll No:									
		(B SEM V) THEORY I CONTRO	FECH EXAMINAT OL SYSTEM	TION /I	2018-	-19						
Time: 3 Hours							Total Marks:70						
No	otes: Assi	ume any Miss	ing Data.										
			SECT	ΓΙΟN – A									
1.	Attempt all parts of the following.				(7*2=14)								
	(a) Wha	at is Masons's g	gain formula?										
	(b) Wha	at is an impulse	response?										
	(c) What	at is steady stat	e error?			2							
	(d) Defi	ne damping ra	tio.		1,								
	(e) Defi	ne gain cross c	over frequency and phas	e margin?	1								
	(f) Wha	at is Centroid in	n root locus?										
	(g) Defi	ne State variab	le and state space.										
				X							1	х ^о ́	
			SECT	FION – B							V		
2.	Attemp	ot any three p	arts of the following				(3	*7=2	21)	5)		
	(a) For	a unity feedbac	k system the open loop $G(s) = F$	transfer funct $\frac{x}{s(s+2)(s^2+)}$	ion is 6s+2:	giv 5)	en by)	7	•			

- (i) Sketch the root locus (ii) At what value of 'K' the system becomes unstable. (iii) At this point of instability determine the frequency of oscillation of the system. ١X
- (b) Explain the working of servomotor with suitable diagram and also derive the field controlled D.C. motor transfer function.
- (c) Draw the Nyquist plot for the unity feedback system whose open loop transfer function is

$$G(s)H(s) = \frac{K}{s^2(1+sT)}$$

(d) Determine the transfer function of the circuit given below-

(e) Establish the correlation between time response and frequency response analysis and suitably explain with diagrams.

SECTION - C

(5*7=35)

Note: - All questions are compulsory. 3. Attempt any one parts of the following:

- (a) Find the generalized error coefficients for a system whose G(S) H(S) = 1/S (S+2) and also find the expression for steady state error for input $r(t)=2+3t+2t^3$.
- (b) Sketch the polar plot for the following transfer function

 $G(S) = (1+4S)/S^2(S+1)(2S+1)$

4. Attempt any one parts of the following:

- (a) Explain P, PI, PID controllers and also give their advantages.
- (b) Derive the expressions for second order system for under damped case and when the input is unit step.

5. Attempt any one parts of the following:

2:AA 17.55.243.9A (a) Construct the state model of a system characterized by the differential equation. Give the block diagram representation of the state model.

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = u$$

(b) A single input signal output system is given as

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$$

Test for controllability and observability.

6. Attempt any one parts of the following:

(a) For the given transfer function-

$$G(s) H(s) = \frac{2}{s(1+0.5s)(1+0.05s)}$$

Determine phase crossover frequency and gain margin.

(b) The forward path transfer function of unity feedback control system is G(s) = 100/s(s+6.45). Find the resonance peak M_r , resonant frequency ω_r and bandwidth of the closed loop system.

7. Attempt any one parts of the following:

- (a) What is the effect of adding pole to a system? Discuss.
- (b) Explain the lag compensation.