Printed Page	e 1 of 2					S	ub (Code	e: R	EE5	02
Paper Id:	120502	Roll No:									

B.TECH (SEM V) THEORY EXAMINATION 2019-20 POWER TRANSMISSION & DISTRIBUTION

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

a.	How a circuit breaker is specifically different from a switch.
b.	State the empirical formula for determining the system voltage of transmission
	line.
c.	What are ACSR conductor stands?
d.	For what purpose bundle conductor are used in transmission line.
e.	What is Dielectric strength of Air?
f.	How are voltage distribution and the string efficiency affected by rain?
g.	What is the role of earthing transformer in neutral grounding?

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

a.	Derive formula to calculate the ratio of copper volume used in two phase four-
	wire system and a two-wire d.c. system.
b.	Draw a phasor diagram of a nominal-T transmission line and find its A,B,C,D constants.
c.	Derive expressions for voltages induced due to (i) electromagnetic and (ii) electrostatic effects of interference between power and telephone lines and show how these results can be used for calculating electromagnetically and electrostatically induced emf's on telephone line when the power line is 3-phase and there are two telephone conductors.
d.	Derive expression for sag and tension in a power conductor string between two supports at equal heights considering the wind and ice loading.
e.	What is the need of grounding the neutral. Describe briefly the various grounding technique.

SECTION C

3. Attempt any *one* part of the following:

(a)

 $7 \times 1 = 7$

	to bus-1 through transformer T ₁ , generator G ₂ connected to bus-2 through
	transformer T ₂ , three synchronous motors M ₁ to M ₃ connected to bus-3 through
	transformer T ₃ , transmission lines TL ₁ , TL ₂ and TL ₃ connected between bus 1-
	2, 2-3 and 1-3 respectively.
(b)	State Kelvin's law. Determine the best current density in amp/mm ² for a three
	phase overhead line. The line is in use for 2600 hours per year and conductor
	costs Rs. 3.0 / kg. It has a specific resistance of 1.73 x 10^{-8} Ω -m and weighs
	6200 kg / m ³ .Cost of energy is 10 paise / unit. Interest and depreciation is 12 %
	of conductor costs.

Draw single line diagram of a three bus system having generator G₁ connected

Id:	120502		Roll No:											
Atter	npt any <i>one</i> pa	rt of the fo	ollowing:								7	7 x 1	= 7	7
(a)	Find the indulatine.	ctance per	phase of	symr	netr	rical	ly s	pace	d dou	ble	circ	uit 3	3-ph	nase
(b)	A 3-phase,50 between adjact wire (outside KV. Find the	cent conductor	ctors. The diameter	con = 1.	duct	tors cm)	are . Tl	hard ne vo	l drav Itage	vn ´ of	7 str the	and	cop	pe
Atter	npt any <i>one</i> pa					<u>8</u> -			P			7 x 1	= 7	7
(a)	Explain the s	ituation un	der which	1 cor	ona	ph	eno	meno	n sta	rts	in h	igh	volt	age
()	power transmi													
(b)	Explain the n string of 8 sus earth capacita would give a result.	spension in nce is equa	sulators is al to C, fir	to book	e fit	tted alue	wit s of	h a g `line	rading of pi	g rii	ng. I	f the	e pii	n t
Atter	npt any <i>one</i> pa										7	7 x 1	= 7	7
(a)	Show that the obtained whe	n radius o	f cable sh	eath	(R)	eq	uals	e.r.	wher	e e	is t			
	radius of conductor. Explain dielectric loss and heating of a cable. Derive the formula for insulation resistance of a cable. Calculate insulation resistance of 5 km length of single core cable whose insulation resistance is 5x 10 ¹⁴ W-cm, insulation thickness is 1 cm and radius of conductor is 1.25 cm.													
(b)	Derive the foresistance of 5 10 ¹⁴ W-cm, in	rmula for 5 km lengtlusulation th	insulation of single ickness is	resi	star e ca	ble	of who	a cat	ole. C sulati	on	resis	stanc .25 c	e is em.	5.5
	Derive the for resistance of 3 10 ¹⁴ W-cm, in mpt any one pa	rmula for 5 km length sulation the rt of the fo	insulation of single ickness is ollowing:	resi core 1 cm	star e ca n and	ble d ra	of who	a catose in	ole. C sulati onduc	on	resis is 1.	stand .25 c	ce is cm. = 7	5 5
Atter	Derive the for resistance of 5 10 ¹⁴ W-cm, in mpt any one particle layor distribution. (i) Enlist the control of the formula	rmula for 5 km length sulation the rt of the fout of distri	insulation of single ickness is illowing: bution sy	resi core 1 cm	star e ca n and	ble d ra	of who dius	a calose in sof co	ole. Conduction	tor mar	resis is 1.	stanc 25 c 7 x 1 sec	ce is cm. = 7	5 5
Atter (a)	Derive the for resistance of 3 10 ¹⁴ W-cm, in mpt any one part Describe layor distribution. (i) Enlist the compared to the c	rmula for 5 km length sulation the rt of the fout of distri	insulation of single ickness is illowing: bution sy	resi core 1 cm	star e ca n and	ble d ra	of who dius	a calose in of control	ole. Conduction	tor mar	resis is 1.	stanc 25 c 7 x 1 sec	ce is cm. = 7	5 5
Atter (a)	Derive the for resistance of 5 10 ¹⁴ W-cm, in mpt any one particle layor distribution. (i) Enlist the control of the formula	rmula for 5 km length sulation the rt of the fout of distri	insulation of single ickness is illowing: bution sy	resi core 1 cm	star e ca n and	ble d ra	of who dius	a calose in of control	ole. Conduction	tor mar	resis is 1.	stanc 25 c 7 x 1 sec	ce is cm. = 7	5 5
Atter (a)	Derive the for resistance of 3 10 ¹⁴ W-cm, in mpt any one part Describe layor distribution. (i) Enlist the compared to the c	rmula for 5 km length sulation the rt of the fout of distri	insulation of single ickness is llowing: bution sy es in distr	resi core 1 cm	star e ca n and	ble d ra	of who dius	a calose in of control	ole. Conduction	tor mar	resis is 1.	stanc 25 c 7 x 1 sec	ce is cm. = 7	5 5