Printed Page 1 of 2

Roll No:

B.TECH. (SEM V) THEORY EXAMINATION 2019-20 MANUFACTURING SCIENCE & TECHNOLOGY-II

Time: 3 Hours

Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief. 1.

a.	During metal cutting operation with coefficient of friction (μ)=0.3 and rake
	angle(α =12 ⁰), calculate shear plane angle using Lee and Shaffer theory of metal
	cutting.
b.	Differentiate between up milling and down milling.
c.	Differentiate between polishing and buffing operation.
d.	Define the term tolerance sink.
e.	Define deposition rate, reinforcement, weld bead and throat related to welding
	process.
f.	Define the term duty cycle.
g.	Differentiate between chemical machining and electrochemical machining.

SECTION B

Attempt any three of the following: 2.

g.	Differentiate between chemical machining and electrochemical machining.								
		5							
	SECTION B								
	SECTORE								
Atten	npt any three of the following: $7 \times 3 = 21$								
a.	Show that during orthogonal cutting with a zero degree of rake angle, the ratio								
	of the shear strength τ_s of the work material to specific cutting energy (U _c), is								
	given by								
	$\tau_{\rm s}/U_{\rm c} = (1 - \mu r) \cdot r/1 + r^2$								
	Where r is chip thickness ratio and μ is coefficient of friction and U _c is specific outting energy.								
1 .	What do you mean by tonon turning anantion? Evaluin any two methods of								
D.	what do you mean by taper turning operation? Explain any two methods of								
	taper turning with help of heat sketch.								
c.	A 900 mm long steel plate is welded by manual metal arc welding process								
	using welding current of 150A, Are voltage of 20V and welding speed of								
	300m/min. If the process efficiency is 0.8 and surface resistance is 36 micro Ω ,								
	calculate the heat input.								
d.	A hole and a shaft have a basic size of 60 mm and are to have a clearance fit								
	with maximum clearance of 0.05mm and minimum clearance of 0.02 mm. the								
	hole tolerance is to be 1.5 times of the shaft clearance. Determine the limits for								
	both hole and shaft using (i) A hole basis system (ii) shaft basis system.								
e.	During an electric discharge drilling of 10 mm square hole in a low carbon steel								
	plate of 5 mm thickness brass tool and kerosene are used. The resistance and								
	capacitance in the relaxation circuit are 50Ω and 10μ , respectively. The supply								
	voltage is 200 V and the gap is maintained at such a value that the discharge								
	takes place at 150 V. Estimate the time required to complete the drilling								
	operation.								

$2 \times 7 = 14$

rinted	l Page	2 of 2		Sub Code: R									RME	503			
Paper Id:		140508	F	Roll No:													
SECTION C																	
•	Atter	mpt any one part of the following: $7 \ge 1 = 7$															
	(a)	For a certain job cost of metal cutting is Rs. 18C/V and cost of tooling is Rs. $270C/TV$. Where C' is constant, 'V' is cutting speed in m/min. and 'T' is tool life in min. The Taylors tool life equation is $VT^{0.25} = 150$. Calculate the optimum cutting speed (m/min) for minimum total cost.												1 e			
	(b)	In an orthogo chip thickness (V)=2m/sec. I thickness=0.2 along shear pl	an orthogonal cutting operation the following data has been observed, uncut ip thickness = 0.128 mm, width of cut = 6035 mm, cutting speed 7)=2m/sec. Rake angle = 10 ⁰ , cutting force =567N, thrust force =227N, chip ickness=0.228 mm. Determine the shear angle, friction angle, shear stress ong shear plane and chip flow velocity using merchant theory											t 1 5 5			
•	Atter	npt any <i>one</i> pa	rt of the foll	owing:							2	7	x 1 :	= 7			
	(a)	Differentiate I shaper with he	between shap elp of neat sk	er and pl etch.	anne	er. Als	so ey	xplai	in th	ne di	rive	me	mechanism of				
	(b)	Show that m $t = 2 f \sqrt{dt}$	aximum chip $\overline{D-d}$ / NZL	p thickne), here <i>f</i>	ess f =ta	in sla ble fe	lab milling operation is given by										
		of teeth in the	cutter, $D = cu$	utter dian	netei	r and c	l= d	epth	of	cut.	e cit	,	2 11				
	Atter	npt any <i>one</i> pa	rt of the foll	owing:								7	x 1 =	= 7	3		
	(a)	Discuss the material removal mechanism of chip formation of grinding process. Also explain cylindrical grinding with neat sketch.										·					
	(b)	Explain the w grinding whee	wear mechanism of grinding wheel. Also explain specification of meel with suitable example.										f				
•	Atter	npt any <i>one</i> pa	rt of the foll	owing:							N	7	x 1 =	= 7			
(a) Explain principle of Arc welding and Tungsten inert gas welding with neat sketch.									wit	h hel	p of						
	(b)	Explain the principle of Resistance welding process. Also explain Thermit welding process with help of neat sketch.															
	Atter	npt any <i>one</i> pa	rt of the foll	owing:		0						7	x 1 :	= 7			
	(a)	Explain the m expression for	hechanism of material ren	electroc	hem 2.	ical m	achi	ining	g pr	oces	ss. A	Also	deri	ve the	e		
	(b)	Explain the working principle of laser beam machining with neat sketch. Also write down the limitations and application of laser beam machining.)				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~														