

				Sub	ject	Co	de: l	KEE	2056		
Roll No:											

B. TECH (SEM-V) THEORY EXAMINATION 2021-22 NEURAL NETWORKS AND FUZZY SYSTEM

Time: 3 Hours

Total Marks: 100

Printed Page: 1 of 2

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. Compare and contrast biological and artificial neural network.
- b. What is Rosenblatt's Perceptron?
- c. What do you understand by the term 'training of neural network'?
- d. Define Gradient Descent learning.
- e. Let A and B be two fuzzy sets given by: $A = \{(x_1,0.2), (x_2,0.5), (x_3,0.6)\}; B =$ $\{(x_1, 0.1), (x_2, 0.4), (x_3, 0.5)\}$. Find the membership value of x_2 in (A-B).
- f. Define linguistic variables.
- What is FLC? g.
- h. Write GMP fuzzy inference rule.
- Briefly explain fuzzy neuron architecture of fuzzy BP model. i.
- How weights are adjusted in fuzzy backfropagation? j.

2. Attempt any three of the following:

- What is the Activation function in ANN? Explain different types of activation functions used in AM.
- b. Let Job = $\{job_1, job_2, job_3, job_4\}$ and Compensation = $\{c_1, c_2, c_3, c_4\}$ are set of four different jobs and four categories of compensation respectively. The fuzzy sets Risky-job and High-Compensation are defined on the universes, Job and Compensation respectively as given below.

Risky-Job = $\{(job_1, 0.3), (job_2, 0.8), (job_3, 0.7), (job_4, 0.9)\}$

High-Compensation = $\{(c_1, 0.2), (c_2, 0.4), (c_3, 0.6), (c_4, 0.8)\}$ Figure out the implication relation: If 'job is visky' Then 'compensation is high'.

- Find whether the following rule is a Tamplogy $(a \rightarrow b) \rightarrow ((a \rightarrow b') \rightarrow a')$. Show c. with truth table.
- Discuss fuzzy BP model for Earthquake damage evaluation. d.
- Describe XOR problem in neural network also implement Neural Network to e. solve XOR problem.

Attempt any one part of the following: 3.

 $10 \times 1 = 10$

- What are the various artificial neural network structures available? Explain with complete mathematical model.
- What is the meaning of learning in artificial neural networks. Describe the different learning methods available in artificial neural networks.

Attempt any one part of the following:

 $10 \times 1 = 10$

Illustrate different steps of the Back-propagation algorithm. (a)

	Pri	inted	i Pa	ge: 2	2 of 2	
Sub	ject	Cod	de: I	KEF	2056	

				 	J	 	
	T	 					
Roll No:				 			

- What are various tuning parameters in back propagation network and how (b) these parameters affect the BPN?
- 5. Attempt any one part of the following:

 $10 \times 1 = 10$

Consider the fuzzy sets A and B defined on the interval X: [0, 5] of real numbers, by the membership grade functions.

$$\mu_A(x) = \frac{x}{x+1}$$
, $\mu_B(x) = 2^{-x}$

Determine the mathematical formulae and graphs of the membership grade function of each of the following sets:

- (i) $A \cap B$
- (ii) (A U B)c
- (b) With the help of example, explain fuzzy relation. Let $A = \{(x_1, 0.2), (x_2, 0.7),$ $(x_3, 0.4)$ and B = $\{(y_1, 0.5), (y_2, 0.6)\}$ be two fuzzy sets defined on the universe of discourse $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2\}$ respectively. Interpret the fuzzy relation between two sets A and B.
- 6. Attempt any one part of the following:

 $10 \times 1 = 10$

- Define the defuzzification. What are the different methods of defuzzification (a) process? Discuss one method in detail.
- Explain Greg Viot's Fuzzy Cruise Controller. (b)
- 7. Attempt any one part of the following:

- (a)
- Illustrate the different step of the Fuzzy-Backpropagation training.

 Define LR-type fuzzy numbers, and explain various operations on LR type OA.Jan.2022 08:58:19 (b) Fuzzy numbers.