

					Pr	inte	l Pa	ge: 1	l of 2	
				Sub	ject	Cod	e: K	ME	2501	
Roll No:										

B.TECH (SEM- V) THEORY EXAMINATION 2021-22 HEAT AND MASS TRANSFER

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

C	F	C'	ГI	n	N	Λ

SECTION A				
1.	Attempt all questions in brief.	2 x 10	CO	
Q no.	Question	Marks	CO	
a.	What is the difference between thermodynamics and heat transfer?	2	1	
b.	How the thermal conductivity of material is defined? What are its units?	2	1	
c.	What is meant by transient heat conduction?	2	2	
d.	Explain effectiveness and efficiency of fin.	2	2	
e.	What is turbulent flow? Define it.	2	3	
f.	Define Reynolds's number, also write the significance of Reynolds's number.	2	3	
g.	Define Stefan Boltzmann's law.	2	4	
h.	Explain black body, opaque body, white body and grey body also.	2	4	
i.	How heat exchangers are classified?	2	5	
i.	What are the various modes of mass transfer?	2	5	

SECTION

	5251751.[7]		
2.	Attempt any three of the following:		V-00
Q no.	Question /	Marks	Dec
a.	Drive an expression for heat conduction through a composite wall.	10.	11
b.	It is required to heat oil to about 300°C for frying purpose. A ladle is used in the frying. The section of the handle is 5 mm x 18 mm. the	1. O	2
	surroundings are at 30°C. The conductivity of the material is 205°C. If the temperature at a distance of 380 mm from the oil should not reach 40°C, Determine the convective heat transfer coefficient.		
C.	Differentiate between:- (i) Natural and forced convection. (ii) Hydrodynamic and thermal boundary layer mikness.	10	3
d.	A 70 mm long circular surface of a circular hole of 35 mm diameter maintained at uniform temperature of 250°C. Find the loss of energy to the surroundings at 27°C, assuming the two ends of the hole to be as parallel discs and the metallic surfaces and surroundings have a black	10	4
е.	body characteristics. Derive an expression for effectiveness NTU method for parallel flow.	10	5

3. Attempt any one part of the allowing:

Q no.	Question	Marks	co
a.	Derive a general heat conduction equation for Cartesian co-ordinate. And also draw the temperature-thickness profile for it.		1
b.	A mild steel tank of thickness 12 mm contains water at 95°C. The thermal conductivity of mild steel is 50 W/m°C, and the heat transfer coefficients for the inside and outside the tank are 2850 and 10 W/m²°C, respectively. If the atmospheric temperature is 15°C, calculate: (i) The rate of heat loss per square meter of the tank surface area. (ii) The temperature of the outside surface of the tank.	10	1

Roll No: Attempt any one part of the following: CO Marks Q no. 2 10 An aluminium alloy plate of 400 mm x 400 mm x 4mm size at 200 °C is a. suddenly quenched into liquid oxygen at -183°C. Starting from fundamentals or deriving the necessary expression to determine the time required for the plate to reach a temperature of -70 °C. Assume h = 20000 KJ/m² h °C, $c_p = 0.8$ KJ/Kg °C and density = 3000 Kg/m³. b. Prove that for a body whose thermal resistance is zero, the temperature 10 2 required for cooling or heating can be obtained from the relation $(t-t_a)/(t_i-t_a) = \exp[-B_i F_a]$ Where the symbols have their usual meanings. Attempt any one part of the following: 5. Q no. Marks CO a. A nuclear reactor with its core constructed of parallel vertical plates of 10 3 2.2 m high and 1.4 m wide has been designed on free convection heating of liquid bismuth. The maximum temperature of the plate surface is limited to 960°C while the lowest allowable temperature of the bismuth is 340°C. Calculate the maximum possible heat dissipation from the both sides of each plate. For the convection coefficient for the plate is $Nu \approx 0.13 (Gr.Pr)^{0.333}$ Where different parameter are evaluated at the thean film temperature. Air at 20°C flowing over a flat plate which is 200 mm wide and 500 mm long. The plate is maintained at 100°C. Find the heat loss per b. hour from the plate f the air is flowing parallel to 500 mm side with 2 m/s velocity. What will be the effect on heat transfer if the flow is parallel to 200 mm? The properties of air at (100+20)/2 = 60°C are v $= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, k = 0.025 \text{Wypt}^6\text{C} \text{ and } \text{Pr} = 0.7.$ 6. Attempt any one part of the following: Q no. Marks CO Determine the radiant heat exchanger in W/ m² between two large 4 parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of entiresivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8}$ W/ m²k⁴ Derive the expression for net heat exchange between black bodies for b. 4 infinite parallel planes. Attempt any one part of the following: 7. Q no. Question Marks CO The flow rates of hot and cold water treams running through a parallel flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a a. 5 temperatures 75°c and 20°c respectively. The exit temperature of hot water is 45°c. If the individual heat transfer coefficient on both sides are 650 W/m²°C. Calculate:

The area of heat exchanger.

Differentiate between the mechanisms of filmwise and dropwise

the rate of heat transfer

(i) (ii)

condensation.

b.

5