Printed Pages-4

ECS603

(Following Paper ID and Roll No. to be filled in your Answer Book)						
PAPER ID : 2476	Roll No.					T
			1.			

B. Tech.

(SEM. VI) THEORY EXAMINATION 2010-11 COMPILER DESIGN

Time : 3 Hours

Total Marks : 100

Note : Attempt all questions.

1. Attempt any **four** parts of the following :

 $(5 \times 4 = 20)$

- (a) Explain the compilation with suitable block diagram. Also discuss the role of various phases of the compiler.
- (b) Discuss the boot strapping of cross-compiler.
- (c) Describe the task performed by following programs :
 - (i) Preprocessors
 - (ii) Assemblers
 - (iii) Loaders and Link-Editors.
- (d) Discuss the algorithms for subset construction and computation of ε-closure.
- (e) Show the construction of NFA for following regular expression.

(a | b)*a (a | b) (a | b)

(f) Explain how LEX tool may be used to create lexical analyser?

1

ECS603/RFW-21350

[Turn Over

- 2. Attempt any two parts of the following: $(10 \times 2 = 20)$
 - (a) Explain recursive-descent parsing. Consider the following grammar :

 $S \rightarrow aSa/aa$

That generates all even length strings of a's except for the empty string. Construct a recursive-descent parser with backtracking for this grammar that tries the alternative aSa before aa. Show that the procedure for S succeeds on 2, 4, \sim or 8 a's, but fails on 6 a's. Also give the language does your parser recognize.

(b) Consider the following left recursive grammar and eliminate the left recursion. Also construct the predictive parsing table :

 $E \rightarrow E + T | T$ $T \rightarrow T * F | F$ $F \rightarrow a | b$

- (c) Give the algorithm to construct LALR parsing table. Construct the LALR parsing table for following grammar :
 - $S \rightarrow AA$ $A \rightarrow aA$ $A \rightarrow b$
- 3. Attempt any two parts of the following : $(10 \times 2 = 20)$
 - (a) Consider the following grammar and give the syntax directed definitions to construct parse tree. For the input

ECS603/RFW-21350

expression 4*7+1*2 construct an annotated parse tree according to your syntax directed definition :

$$E \rightarrow E * T \setminus T$$
$$T \rightarrow T * F \setminus F$$
$$F \rightarrow digit$$

- (b) Discuss types of three address statements and their implementation with examples.
- (c) Give the syntax directed translation scheme to translate the while control construct. Also translate the following program segment into three address code :

while (a > b) if (c > d) c = c - d* e; else

 $c = c + d^* e;$

- 4. Attempt any two parts of the following: (10×2=20)
 - (a) Describe symbol table and its entries. Also discuss various Data Structure used for symbol table.
 - (b) What is activation record ? Explain its organization. Also discuss various storage-allocation strategies.
 - (c) Discuss how Access Links and Displays are used to access non-local names.

3

ECS603/RFW-21350

[Turn Over

- 5. Attempt any two parts of the following : (10×2=20)
 - (a) Explain following code improving transformations with examples :
 - (i) Local and global elimination of common sub-expressions.
 - (ii) Copy propagation and dead code elimination.
 - (b) Explain following loop optimizations with examples :
 - (i) Local and global elimination of common sub-expressions.
 - (ii) Copy propagation and dead code elimination.
 - (c) Write short notes on following :
 - (i) Optimization of Basic Block.
 - (ii) Semantic Errors and its Recovery.