(Following Paper ID	and Roll No	to be	filled in	ı your	Ansv	ver B	ook)
PAPER ID: 2488	Roll No.			Ш			L

B. Tech.

(SEM. VI) THEORY EXAMINATION 2010-11 DIGITAL SIGNAL PROCESSING

Time: 3 Hours

Total Marks: 100

Note: (1) Attempt all questions.

- All questions carry equal marks.
- (3) Be precise in your answer. No second answer book will be provided.
- Attempt any four parts of the following:

 $(4 \times 5 = 20)$

- (a) Give any three properties of Butterworth Low Pass Filters.
- (b) Give the expression for the location of poles and zeros of Chebysev type II filter.
- (c) How one can design Digital Filter from Analog Filters?
- (d) What are advantages and disadvantages of Bilinear Transformation?
- (e) Distinguish between Recursive realization and Non Recurse realization. Also write the name of different types of structure for realization of IIR system.
- (f) Prove that physically realizable IIR Filter can not have linear phase.

- Attempt any two parts of the following: (10×2=20)
 - (a) Given the specification αp = 1 db, αs = 30 db, Ωp =200 rad/sec, Ωs = 600 rad/sec. Determine the order of the Butterworth Filter where Ωp and Ωs are the pass band and stop band frequency and αp and αs are pass band and stop band attenuation.
 - (b) Obtain the direct form I realization for the system described by the difference equation:

$$Y(n) = 0.5Y(n-1) - 0.25Y(n-2) + X(n) + 0.4X(n-1).$$

- (c) (i) How many number of addition, multiplication and memory locations are required to realize a system H(z) having M zeros and N poles in (i) Direct Form I realization (ii) Direct Form II realization.
 - (ii) Determine the order and poles of low pass Butterworth filter having 3 dB attenuation at 500 Hz and attenuation of 40 Db at 1000 Hz.
- 3. Attempt any two parts of the following: $(10 \times 2 = 20)$
 - (a) What is the reason that FIR Filters are always stable? Also write the properties of FIR Filter. Explain the Parallel and Cascade form realization of IIR Filters.
 - (b) What is the principle of designing FIR filter using Windows?
 - (c) What is Gibbs phenomenon? Compare Hamming Window with Kaiser Window.

- Attempt any four parts of the following: (4×5=20)
 - (a) What is Zero Padding? What are its uses?
 - (b) Distinguish between the following:
 - (i) Fourier Transform and Fourier series.
 - (ii) Linear convolution and Circular convolution.
 - (c) Obtain the Circular Convolution of the following:
 X(n) = {1, 2, 1}, H(n) = {1, -2, 2}
 - (d) Determine the Four Point DFT of the Sequence:X(n) = {1, 1, 0, 1}.
 - (e) Find the circular convolution of the two sequence:
 X(n) = {1, 2, 2, 1} and Y(n) = {1, 2, 3, 1} using Matrix method.
 - (f) List the Four properties of DFT.
- 5. Attempt any two parts:

 $(2 \times 10 = 20)$

- (a) Write the advantages of FFT over DFT. Calculate the number of multiplications needed in the calculation of DFT using FFT algorithm.
- (b) Distinguish between DIT and DIF algorithm. Draw the flow graph of a two point radix-2 DIF and DIT FFT.
- (c) Compute the DFF of the sequence $X(n) = \cos(n\pi)/2$ whose N = 4 using DIF FFT algorithm.