(Following Paper ID a	nd Roll No. 1	to be	fille	ed in	you	r Ans	wer B	ook)
PAPER ID: 2490	Roll No.		I	Ι	П			

B. Tech.

(SEM. VI) THEORY EXAMINATION 2010-11 INTRODUCTION TO ELECTRIC DRIVES

Time: 2 Hours Total Marks: 50

Note: Attempt all questions. All questions carry equal marks.

- Attempt any two parts of the following: (5×2=10)
 - (a) Explain the basic principle of thyristor. Explain forward conduction mode of thyristor.
 - (b) Explain two transistor model of a thyristor. Explain holding and latching current.
 - (c) Explain thristor turn-on methods. What are the application of thyristor.
- 2. Attempt any two parts of the following: (5×2=10)
 - (a) Explain basic principle of phase control. Define single phase half wave circuit with RL load.

- (b) A singl-phase 230 V, 1 kW heater is connected across 1phase, 230 V, 50 Hz supply through an SCR for firing angle delays of 45° and 90°. Calculate the power absorbed in the heater element.
- (c) Explain single phase full wave bridge converter. Also explain three phase bridge inverter.
- 3. Attempt any two parts of the following: (5×2=10)
 - (a) A step-up chopper has input voltage 220 V and output voltage of 660 V. If the non-conducting time of thyristor chopper is 100 μs, compute the pulse width of output voltage. In case pulse width is halved for constant frequency operation, find the new output voltage.
 - (b) Explain the basic principle of operation of step up and step down chopper with V-I characteristics.
 - (c) Define the basic principle of operation of cycloconverter. Explain the working of 1-φ and 3-φ half wave cycloconverter.
- 4. Attempt any two parts of the following: (5×2=10)
 - (a) Explain basic machine equations. Define DC motor speed control.
 - (b) Explain Single-φ qual converter drives, also explain twoquadrant chopper drives.

- (c) Explain four quadrant chopper drives. Define 3-φ semiconductor drives.
- Attempt any two parts of the following: (5×2=10)
 - (a) Define speed control of induction motors. Define method of resistance control.
 - (b) A 3-φ, 400 V, 15 kW, 1440 rpm, 50 Hz star connected induction motor has rotor leakage impedance of 0.4 + j1. 6 Ω. Starter leakage impedance and rotational losses are assumed negligible. If this motor is energised from 120 Hz, 400 V, 3-φ source, then calculate:
 - (i) the motor speed at rated load
 - (ii) the slip at which maximum torque occurs and
 - (iii) the maximum torque.
 - (c) What are ac drives? Give the merits and demerits of ac drives with respect to dc drives.