(Following Paper ID and Roll No. to be filled in your Answer Book)									
PAPER ID: 2534	Roll No.			П					

B. Tech.

(SEM. VI) THEORY EXAMINATION 2010-11 OPTIMIZATION TECHNIQUES IN ENGINEERING

Time: 2 Hours Total Marks: 50

Note: (1) Attempt all questions.

- (2) Attempt all parts of first question and two parts from each remaining three questions.
- (3) First question carries 14 marks while remaining three questions carry 12 marks each.
- (4) Assume suitable data missing if any.
- (a) Differentrate between Convex polyhedron and polytope.
 - (b) What is the significance of Lagrange multipliers?
 - (c) Define a saddle point and indicate its significance.
 - (d) What do you understand by nonlinear least square optimization problem?
 - (e) What is an active constraint?
 - (f) Compare between Euler and modified Euler method.
 - (g) Define the correlation coefficient. (2×7=14)

2. (a) Locate and classify the stationary points of the following function:

$$f(x_1, x_2) = x_1^2 + 2x_1x_2 + 2x_2^2 - 2x_1 + x_2 + 8$$

(b) Determine whether the following functions are convex or concave.

$$f(x_1,x_2,x_3) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 3x_1 - 2x_2 + 15$$

(c) Consider the following problem:

Minimize
$$f = x_1^2 + x_2^2 + x_3^2$$

subject to

$$x_1 + x_2 + x_3 \ge 5$$

 $2 - x_2 x_3 \le 0$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 2$

Determine whether the Kuhn-Tucker conditions are satisfied at the following points: $x_1 = 2$, $x_2 = 1$, $x_3 = 2$.

 $(2 \times 6 = 12)$

- 3. (a) Write the steps in Genetic Algorithm.
 - (b) Find whether the given direction s = (1,1)^T at the point (2,3)^T is descent for the function f(x₁, x₂)= 2x₁² + x₂² 2x₁x₂ + 4. Compare it with the direction -∇f at x = (2, 3)^T.
 - (c) Describe the Euler method to solve an initial value problem.

$$(2 \times 6 = 12)$$

- 4. (a) The width of a slot on a duralium forging is normally distributed. The specifications of the slot width is 0.900 ± 0.005. The parameters μ = 0.9 and σ = 0.003 are known from past experience in production process. What is the percent of Scrap forging?
 - (b) Explain the cutting plane method used in integer programming problem. Give an example.
 - (c) Using Simplex algorithm solve the following problem: maximize $f = y_1 + 2y_2$ subject to $3y_1 + 2y_2 \le 12$, $2y_1 + 3y_2 \ge 6$, $y_1 \ge 0$, y_2 is unrestricted in sign. (2×6=12)