(Following Paper ID and Roll No. to be filled in your Ansikes Book
PAPER ID : 2488

B. Tech.

(SEM. VI) THEORY EXAMINATION 2011-12

DIGITAL SIGNAL PROCESSING

Time : 3 Hours
Total Marks : 100
Note : Attempt all questions. All questions carry equal marks.

1. Attempt any two parts of the following :
($10 \times 2=20$)
(a) What do you mean by canonical form of realization? Determine the system function $H(z)=\frac{Y(z)}{X(z)}$ for the following system shown in figure 1 :

(b) Find the ladder structure realization of the system function:

$$
H(z)=\frac{2 z^{-2}+3 z^{-1}+1}{z^{-2}+z^{-1}+1} .
$$

(c) System function $H(z)=\frac{Y(z)}{X(z)}$ for a linear shift invariant
system is given by $\frac{2}{z^{-3}+4 z^{-2}+z^{-1}+2}$.
Find the two part realization of the system.
2. Attempt any two parts of the following :
(a) Explain frequency working effect. How this problem is overcome in Bilinear transform method of IIR filter design ?

Apply Bilinear transformation technique to transform the analog transfer function :

$$
\mathrm{H}_{\mathrm{a}}(\mathrm{~s})=\frac{1}{(\mathrm{~s}+1)\left(\mathrm{s}^{2}+\mathrm{s}+1\right)}
$$

(b) Design digital Butterworth filter from the specification given below :

$$
\begin{array}{cc}
0.8 \leq\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right)\right| \leq 1 & 0 \leq \mathrm{w} \leq 0.2 \pi \\
\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right)\right| \leq 0.2 & 0.6 \leq \mathrm{w} \leq \pi
\end{array}
$$

(c) Derive the mathematical expression for impulse invariance technique. Discuss its disadvantages and how it can be taken care of.
3. Attempt any two parts of the following :
(a) Compare FIR and IIR filter. Show that for a linear phase FIR filter, the impulse response is given by :

$$
h(n)=h(N-1-n)
$$

or $\quad h(n)=-h(N-1-n)$
and hence classify the FIR filters.
(b) Explain Gibb's phenomenon. Find the response of rectangular window and explain it.
(c) Determine the frequency response of symmetric Hann window given by :

$$
w(n)= \begin{cases}\frac{1}{2}\left(1+\cos \frac{n \pi}{M}\right) & -m \leq n \leq M \\ 0 & \text { otherwise }\end{cases}
$$

4. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) Find circular convolution of sequences $\widetilde{\mathrm{x}}_{1}(\mathrm{n})$ and $\widetilde{\mathrm{x}}_{2}(\mathrm{n})$ of length $\mathrm{N}=4$ given by :
$\widetilde{\mathrm{x}}_{1}(0)=1 \quad \widetilde{\mathrm{x}}_{1}(1)=2 \quad \widetilde{\mathrm{x}}_{1}(2)=2 \quad \widetilde{\mathrm{x}}_{1}(3)=1$
$\widetilde{x}_{2}(0)=2 \quad \widetilde{x}_{2}(1)=1 \quad x_{2}(2)=1 \quad x_{2}(3)=2$
(b) Compute the DFT of sequence $b^{n} \cos$ an and show that the IDFT of :

$$
\{\widetilde{\mathrm{x}}(\mathrm{k}-\mathrm{m})\}=\mathrm{W}_{\mathrm{N}}^{\mathrm{mn}} \operatorname{DFT}\{\widetilde{\mathrm{x}}(\mathrm{k})\} .
$$

(c) Consider the sequences given by :

$$
\begin{aligned}
& x_{1}(n)= \begin{cases}1 & 0 \leq n \leq 2 \\
0\end{cases} \\
& x_{2}(n)= \begin{cases}1 & 0 \leq n \leq 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Compute the linear convolution of $x_{1}(n)$ and $x_{2}(n)$ using DFT.
5. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) What do you mean by FFT ? Differentiate between DIT and DIF FFT algorithm. State and prove the symmetry and periodicity properties of complex exponential sequence W_{M}^{K}. Explain how these properties are used in FFT algorithms.
(b) Show that the output data is in bit reversed order for the decimation-in frequency algorithm for $\mathrm{N}=8$.
(c) Develop a DIT FFT algorithm using 4 point DFTs for the case $\mathrm{N}=4^{v}$. Compare the number of multiplications with the algorithm using 2-point PFTS with $\mathrm{N}=2^{2 \mathrm{v}}$.

