(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 2487 Roll No. \square

B. Tech.

(SEM. VI) THEORY EXAMINATION 2011-12

DIGITAL COMMUNICATION

Time : 3 Hours
Total Marks : 100
Note: (1) Answer all questions.
(2) All questions carry equal marks.

1. Attempt any four parts of the following:
(a) What are the main elements of the digital communication system ? Sketch and explain the function of each element.
(b) Differentiate between Base-band and Band-pass data transmission system.
(c) If $\mathrm{Z}=\mathrm{X}+\mathrm{Y}-\mathrm{C}$, where X and Y are the independent random variables with variance $\sigma_{x_{2}}$ and $\sigma_{y_{2}}$ and C is constant. Find the variance of Z .
(d) Write short note on Kraft Inequality.
(e) Define the following terms:
(i) Mutual information
(ii) Entropy
(iii) Channel capacity
(iv) Rate of Information.
(f) Verify equations that is $\mathrm{I}(\mathrm{X}: \mathrm{Y})=\mathrm{H}(\mathrm{Y})+\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X}, \mathrm{Y})$.
2. Attempt any two parts of the following:
($10 \times 2=20$)
(a) Discuss the properties of matched filter. Explain the block diagram of optimum receiver for binary coded signal and derive the expression for Probability of Error (P_{e}) for optimum filter receiver.
(b) Explain the cause of ISI and discuss the Nyquist criterion for distortionless Baseband Binary transmission. Design a binary baseband PAM system to transmit data at a bit rate of $3600 \mathrm{bits} / \mathrm{sec}$ with a bit error probability less than 10^{-4}. The channel response is given by :

$$
\begin{aligned}
\mathrm{H}_{\mathrm{c}}(\mathrm{f}) & =\left\{10^{-2} \text { for }|\mathrm{f}|<2400\right. \\
& =\{0 \quad \text { elsewhere. }
\end{aligned}
$$

The noise power spectral density is $\mathrm{G}_{\mathrm{n}}(\mathrm{f})=10^{-14} \mathrm{watt} / \mathrm{Hz}$.
(c) Give four desirable properties of baseband line codes. Draw the following data formats for the data bit stream 1100110 :
(i) Unipolar RZ,
(ii) Polar NRZ,
(iii) Bipolar NRZ,
(iv) Manchester.
3. Attempt any two parts of the following:
$(10 \times 2=20)$
(a) Write short notes on the following:
(i) Byte Interleaving Tl Carrier System,
(ii) T 1 to T 4 PCM TDM.
(b) Explain the different type of digital carrier modulation schemes giving their merits and demerits for transmission data on band-pass channel. Determine the performance of a QPSK receiver in the presence of AWGN channel.
(c) An FSK system transmits binary data at the rate of 2.5×10^{6} bits per second. During the course of transmission, white Gaussian noise of zero mean and power spectral density $10^{-20} \mathrm{~W} / \mathrm{Hz}$ is added to the signal. In the absence of noise, the amplitude of the received sinusoidal wave for digit 1 or 0 is 1 mV . Determine the average probability of symbol error for the following system configurations :
(i) Coherent binary FSK
(ii) Coherent MSK
(iii) Noncoherent binary FSK.
4. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) What are the various characteristics of Spread Spectrum Signal ? Explain the principle of direct sequence and frequency hopped spread spectrum communication system.
(b) Derive an expression for the probability of error of a DS spread spectrum using binary PSK. In a fast FH spread spectrum system, the information is transmitted via FSK with non-coherent detection. Suppose there are $\mathrm{N}=3$ hops/bit. Determine the probability of, for this system in an AWGN channel with power density ${ }^{1} / 2 \mathrm{~N} 0$ and $\mathrm{SNR}=13 \mathrm{~dB}$ (total SNR over the 3 hops).
(c) Explain the various types of multiuser systems. Determine and compare the capacity of FDMA, TDMA and CDMA in an ideal AWGN channel of bandwidth ' W '.
5. Attempt any four parts of the following :
($5 \times 4=20$)
(a) A Gaussian channel has 1 MHz bandwidth. Calculate the channel capacity and maximum information rate if the signal power to noise spectral density ratio (S / N) is $10^{5} \mathrm{~Hz}$.
(b) The parity check matrix of a $(7,4)$ Hamming code is as given :

$$
H=\left|\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right|
$$

Calculate the syndrome vector for single bit errors.
(c) Define the term Burst error and error detection. How many types of redundancy checks corrected ?
(d) For a $(7,4)$ cyclic code determine the generator matrix if $\mathrm{G}(\mathrm{P})=1+\mathrm{P}+\mathrm{P}^{3}$.
(e) Determine the Huffman code for the following message with their probabilities given :

$\{\mathrm{X}\}$	$[\mathrm{x} 1$	x 2	x 3	x 4	x 5	x 6	$\mathrm{x} 7]$
$\{\mathrm{P}\}$	$[0.05$	0.15	0.2	0.05	0.15	0.3	$0.1]$

(f) Write the advantage and disadvantage of cyclic codes.

