Printed Pages—3

EEC603

(Following Paper ID a	nd Roll No. t	o be	filled	in yo	our	Ans	wer	Bo	ok)
PAPER ID : 2489	Roll No.	1.8 20	300	00 30	gbi	(d)	.(0		

B. Tech.

(SEM. VI) THEORY EXAMINATION 2011-12

MICROWAVE ENGINEERING

Time : 3 Hours

Total Marks : 100

- **Note :** Attempt *all* questions. All questions carry equal marks.
- 1. Attempt any *four* parts of the following : (5×4=20)
- (a) Show that TEM mode cannot exist in the hollow waveguide.
 - (b) Define dominant mode, degenerate mode, group velocity and phase velocity in the context of waveguide.
 - (c) Derive the field equations for TE mode in rectangular waveguide.
- (d) A TE₁₁ mode is propagating through a circular waveguide. The radius of the guide is 5 cm and the guide contains an air dielectric (X'_{np} = 1.841), find f_c , λ_g and z_g for an operating frequency of 3.0 GHz.
- (e) An air filled waveguide with a cross section 2×1 cm transports energy in the TE₁₀ mode at a rate of 0.5 hp. The impressed frequency is 30 GHz. What is the peak value of electric field occurring in the guide ?

1

(f) Write short note on Microstrip Transmission Line.

EEC603/PUR-40165

[Turn Over

- 2. Attempt any *four* parts of the following :
 - (a) Show that the diagonal elements of the s-matrix of a Teejunction are not all zeros.
 - (b) Incident power for a 30 dB coupler is 560 MW. Calculate the power in the main arm and in auxillary arm.
 - (c) A circular cavity resonator having length 8 cm and radius 2 cm is operating in the dominant mode TE_{111} , $(X'_{np} = 1.841)$. Calculate resonant frequency.
 - (d) Derive the s-matrix for a two-hole directional coupler.
 - (e) Explain, how isolator is used to isolate one component from reflection of other components in the transmission line ?
 - (f) Describe the properties of multiport microwave circulator.
- 3. Attempt any *two* parts of the following : $(10 \times 2=20)$
 - (a) What are the limitations of conventional active devices at microwave frequency ?
 - (b) A reflex klystron operates under the following conditions : $V_o = 600 \text{ V}, \text{ e/m} = 1.759 \times 10^{11}, \text{ f}_r = 9 \text{ GHz}, \text{ L} = 1 \text{ mm},$ $R_{sh} = 15 \text{ k}\Omega$. The tube is oscillating at f_r at the peak of the $\eta = 2$. Find V_r , the direct current necessary to give a microwave gap voltage of 200 V and efficiency under this condition ?
 - (c) Explain principle of operation of Backward wave oscillator.
 - Attempt any *two* parts of the following : $(10 \times 2 = 20)$
 - (a) Discuss the Gunn effect and two valley model in detail.
 - (b) With the help of suitable diagram, explain principle of operation of TRAPATT diodes.
 - (c) Discuss the microwave characteristics of tunnel diode.

2

Attempt any two parts of the following :

5.

 $(5 \times 4 = 20)$

- $(10 \times 2 = 20)$
- (a) Calculate the VSWR of a transmission system operating at 10 GHz. Assume TE_{10} wave transmission inside a rectangular waveguide of dimension a = 4 cm, b = 2.5 cm. The distance between twice minimum power point is 1 mm on a slotted line.
- (b) Write short note on measurement of insertion loss and attenuation loss.
- (c) Explain how antenna characteristics are measured ?

EC603/PUR+40165

3