(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER 11): 100655 Roll No. | 1 | 2 | 0 | 3 | 2 | 0 | 0 | 9 | 0 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

B.Tech.

(SEM. VI) THEORY EXAMINATION 2013-14

ADVANCED CONCRETE DESIGN

Time : 3 Hours

Total Marks : 100

Note: (1) Attempt all questions.
(2) All questions carry equal marks.
(3) Use of IS : 456 and IS : 3370 is permitted.
(4) Assume any data suitably, if missing.
(5) The design must be supported by structural drawings.

1. Attempt any two parts of the following:
$(10 \times 2=20)$
(a) Design a circular water tank with a spherical top dome to a capacity of 55 kl . The depth of storage may be taken as 4 m , free board is to be kept as 200 mm . Use M 30 grade concrete and Fe 415 grade steel.
(b) Design a rectangular RC water tank of capacity of 80 kl . The inside dimensions may be taken as $6 \mathrm{~m} \times 4 \mathrm{~m}$. Use M 25 grade concrete and Fe 415 grade steel.
(c) An Intze tank is to be provided for a capacity of 1000 kl , supported on elevated tower consisting of 8 columns. The base of tank is 15 m above ground and depth of foundation is 1.0 m below ground level. Determine the dimensions of all components of the tank. Also design the top dome, top ring beam and side wall. Use M 30 grade concrete and Fe 415 grade steel.
2. Attempt any one part of the following :
(a) Design the foundation for an Intze type water tank supported on an elevated tower consisting of 8 columns. The diameter of the beam is 10 m . The load on each column is 2500 kN . Safe bearing capacity of soil is $240 \mathrm{kN} / \mathrm{m}^{2}$. Use M 25 grade concrete and Fe 415 grade steel. Take constants as $\mathrm{k}_{1}=0.0083, \mathrm{k}_{2}=0.0041$ and $\mathrm{k}_{3}=0.006$.
(b) Determine the dimensions of all the components of an Intze tank for a capacity of 1500 k . The tank is supported on an elevated tower of 15 m height consisting of 8 columns. Taking wind pressure of $1.8 \mathrm{kN} / \mathrm{m}^{2}$ and vertical axial load on each column as 1600 kN , design the columns and braces. Use M 25 grade concrete and Fe 415 grade steel.
3. Attempt any one part of the following:
$(1 \times 20=20)$
(a) Determine the stifmess distribution factors and maximum bending moments in the beams and columns in the substitute frame shown in Fig 1. The T-beam is assumed to have a depth of 600 mm and web width is 350 mm .

Fig 1
(b) Determine member forces in the frame shown in Fig 2. Assume area of each inner column $=1.5$ times the area of each outer column. The intensity of dead load and live load is $20 \mathrm{kN} / \mathrm{m}$ and $25 \mathrm{kN} / \mathrm{m}$ respectively.

Fig 2
4. Attempt any one part of the following: $(\mathbf{1} \times \mathbf{2 0}=\mathbf{2 0})$
(a) Design a slab culvert for a clear span of 5 m having a clear roadway of 10 m between kerbs for a single vehicle of IRC class AA or two vehicles of class A loadings.
(b) A T-beam bridge is to be designed for a span of 30 m . Plan the arrangement of longitudinal girders and cross-beams and design one slab panel for class AA loading. Use M 30 grade concrete and Fe 415 grade steel.
5. Attempt any two parts of the following: ($10 \times 2=20$)
(a) What do you understand by high performance concrete? Explain in detail.
(b) Explain different types of shear connectors used for composite construction.
(c) Design a composite beam for the following data :

Flage width $=1600 \mathrm{~mm}$
Thickness of slab $=120 \mathrm{~mm}$
Span $=10 \mathrm{~m}$
Load $=25 \mathrm{kN} / \mathrm{m}$

