(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID :100651 Roll No. \square

B.Tech.

(SEM. VI) THEORY EXAMINATION 2013-14

ADVANCED FOUNDATION DESIGN

Time : 2 Hours

Note :-Attempt all questions

1. Attempt any four parts of the following: $(3.5 \times 4=14)$
(a) Discuss the equivalent point load method based on approximate stress distribution.
(b) State Boussinesq's equation for determining the vertical pressure under a superimposed load. Discuss the limitations of the equation.
(c) Explain how will you modify the Newmark's equation based on Boussinesq's analysis for vertrical pressure below a corner of uniformly loaded rectangular area when the point at which vertical pressure is required is not located below a corner but below some other point of the rectangle.
(d) Determine the vertical stress at a point P which is located 3 m below and at a radial distance of 3 m from the vertical load of 100 kN . use Westergaard's solution. $(v=0.0)$
(e) A concentrated load of 40 kN acts on the surface of a soil. Determine the vertical stress increment at points directly beneath the load upto a depth of 5 m .
(f) A water tower is supported only on three pillars forming an equilateral triangle with 10 m side. The total weight of the tower is 120 tonnes. Calculate vertical stress 10 m below the ground level under any one of the legs.
2. Attempt any two parts of the following :
$(6 \times 2=12)$
(a) A foundation in sand will be 5 metres wide and 1.5 metres deep. Adopting a factor of safety of 2.5 , what will be safe bearing capacity if the unit weight of the sand is $1.9 \mathrm{gm} /$ c.c. and angle of internal friction is 35°. How does it compare with safe bearing capacity for surface loading. $N_{C}=57, N_{q}=44, N_{y}=42$.
(b) Determine the ultimate bearing capacity of the footing, 1.5 m wide and its base at a depth of 1 m , if the ground water table is located :
(i) at a depth of 0.5 m below the ground surface.
(ii) at a depth of 0.5 m below the base of the footing.

$$
\begin{aligned}
& Y_{\text {sat }}=20 \mathrm{kN} / \mathrm{m}^{3} . \\
& \mathrm{Y}_{\mathrm{d}}=17 \mathrm{kN} / \mathrm{m}^{3}, \phi /=38^{\circ} \& \mathrm{c}=0 \text { use Terzaghi's } \\
& \text { theory. } \mathrm{N}_{\mathrm{q}}=60 \& \mathrm{~N}_{\mathrm{y}}=75 .
\end{aligned}
$$

(c) Exylain in detail, the effects of size of footing on both the ultimate bearing capacity \& the settlement.
3. Attempt any two parts of the following :
(a) What are the factors governing load carrying capacity of pile? What is the objective of pile load test? Write steps to determine safe load from pile load test.
(b) What is negative skin friction? What is its effect on the pile ? A 30 cm . diameter concrete pile is driven in a normally consolidated clay deposite 15 m thick. Estimate the safe load. Take $\mathrm{Cu}=70 \mathrm{kN} / \mathrm{m}^{2}, \propto=0.9$ and F.S. $=2.5$
(c) Discuss the components of well foundation and draw the neat sketch of a well foundation. Explain all the terms in brief.
4. Attempt any two parts of the following: $(6 \times 2=12)$
(a) Derive an expression for the factor of safety of an infinite slope in a cohesionless soil. What is the effect of steady seepage parallel to the slope on the stability?
(b) A 10 m high cutting has a slope of 40° to horizontal, the soil was tested and its cohesion, void ratio \& angle ϕ were found to be $2.5 \mathrm{t} / \mathrm{m}^{2}, 0.81$ and 14° respectively. Determine the FOS with respect to cohesion against failure of the slope. When water level rises upto the full height :
Given : $\mathrm{G}=2.7 \&$ for 40° slope values of stability number for different values of ϕ

ϕ	N
6°	0.122
7°	0.116
14°	0.074

(c) What are the design criteria for foundations of reciprocating machines based on IS : 2874 (I) - 1982 ? Discuss criteria for the design of foundation in case of free vibration without damping.

