Printed Pages-3

EEE012

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID :121656 Roll No. 1 1 0 3 2 2 1 0 4 5

B.Tech.

(SEM. VI) THEORY EXAMINATION 2013-14 SPECIAL ELECTRICAL MACHINES

Time : 3 Hours

Total Marks : 100

Note :- Attempt all five questions. Each question carries equal marks.

- 1. Discuss any four parts of the following : $(5 \times 4 = 20)$
 - (a) Comapare the merits and demerits of single-cage and double-cage induction motors.
 - (b) What are the important problems peculiar to Linear Induction Machine?
 - (c) Draw the Speed-Torque characteristics of switch reluctance motor.
 - (d) The useful torque of a 3-φ, 50Hz, 8-pole induction motor is 190N-m. The rotor frequency is 1.5Hz. Calculate the rotor copper losses if mechanical losses are 700 Watts.
 - (e) Discuss the torque-pulse rate characteristics of a stepping motor.
 - (f) What is the difference between stepper motors and switched reluctance motors ?

EEE012/DQJ-21830

[Turn Over

- 2. Attempt any two of the following : $(10 \times 2=20)$
 - (a) Explain the constructional details and working principle of operation of synchronous reluctance motors with neat diagrams.
 - (b) Explain the operation of 3-φ bipolar BLDC motor with neat diagrams and switching table
 - (c) Explain open loop and closed loop control of stepper motor.
- 3. Attempt any two of the following: $(10 \times 2 = 20)$
 - (a) Explain the principle of operation and constructional features of hybrid motor in detail.
 - (b) Discuss the phenomenon of "Single Phasing" when applied to the three-phase induction motors, designed for continuous working. Explain the difference in behaviour when the single- phasing occurs in the primary and the secondary windings.
 - (c) What is the motor torque τ_m required to accelerate an initial load of 3×10^{-4} kgm² from $f_1 = 1000$ Hz to $f_2 = 2000$ Hz during 100 m/sec? The frictional torques τ_f is 0.05 N-m and step angle is 1.8°.
- 4. Attempt any two parts of the following : $(10 \times 2=20)$
 - (a) Explain the modes of operation of Power Controller for Permanent Magnet Brushless DC motor with a neat diagram.
 - (b) Discuss the construction, principle of operation and characteristics of universal motors.
 - (c) A permanent magnet DC commutator motor has no-load speed of 6000rpm when connected to a 120V supply. The armature resistance is 2.5Ω and rotational and gross lines may be neglected. Determine the speed when the supply voltage is 60V and the torque is 0.5 Nm.

EEE012/DQJ-21830

2

5. Attempt any **two** of the following :

- (a) Derive the EMF and torque equation of permanent magnet synchronous motors.
- (b) Discuss the slip-power recovery scheme of a 3-φ induction motor control. What are its merits & demerits.

3

- (c) Write short notes on any two of the following :
 - (i) Capacitor Motor
 - (ii) Shaded Pole Motor
 - (iii) PCB Motors
 - (iv) Repulsion Motors.

EEE012/DQJ-21830

6675