(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 11050 Roll No. \square

B.Tech.

(SEM. VI) THEORY EXAMINATION 2013-14 GRAPH THEORY

Time : 2 Hours
Total Marks : 50
Note :- Attempt all questions.

1. Answer any four parts : $(4 \times 3=12)$
(a) Prove that in a complete graph with n vertices there are $(\mathrm{n}-1) / 2$ edge disjoint Hamiltonian circuit, if n is an odd number ≥ 3.
(b) Prove that a simple graph with n vertices must be connected if it has more than $[(n-1)(n-2)] / 2$ edges.
(c) Prove that in a every vertex of degree greater than one is a cut vertex.
(d) Prove that a non separable graph has a nullity $\mu=1$ if and only if graph is a circuit.
(e) Prove that an Euler graph cannot have a cut set with an odd number of edges.
(f) Show that a Hamiltonian path is a tree.
2. Answer any two parts :
(a) Write Prim's algorithm to find minimal spanning tree.
(b) Prove that a spanning tree T of a given weighted connected graph G is shortest spanning tree of G if and only if there exists no other spanning tree of G at a distance of one from T whose weight is smaller than that of T .
(c) (i) Draw planar connected graph such that.

- $e=3 n-6$
- $e<3 n-6$
(ii) Prove that in a nontrivial tree T there are at least two pendant vertices.

3. Answer any three parts of the following:
(a) Prove that a connected planar graph with n vertices and e edges has $\mathrm{n}-\mathrm{e}+2$ regions.
(b) If every region of a simple planar graph (with e edges and v vertices) embedded in a plane is bounded by k edges, show that $e=[k(n-2)] / k-2$
(c) (i) Show that a complete graph of four vertices is self dual
(ii) Using Kuratowski's theorem, show that Petersen's graph is nonplanar.
4. Answer any four parts of the following: $\quad(3.5 \times 4=14)$
(a) Prove that covering h of a graph is minimal if and only if h contains no path of length three or more.
(b) Prove that vertices of every planar graph can be properly colored with five colors.
(c) Show that the Chromatic polynomial of a graph of n vertices satisfies inequality
$\mathrm{P}_{\mathrm{n}}(\lambda)<=\lambda(\lambda-1)^{n-1}$
(d) If two graphs G_{1} and G_{2} are 1-isomorphic, prove that the rankof G_{1} equals the rank of G_{2} and nullity of G_{1} equals the nullity of G_{2}.
(e) Show that a simple connected planer graph with 8 vertices and 13 edges cannot be bichromatic.
(f) Prove that in a transport network G, the value of flow from source S to $\sin k D$ is less than or equal to the capacity of any cut that separates S from D.
