(Following Paper ID and Roll No, to be fllled in your Answer Book) PAPER TD : 131602

Roll No.

B. Tech.
(SEM. VI) THEORY EXAMTNATION, 2014-15 DIGITAL SIGNAL PROCESSING

Time : 3Hours]
[Total Marks : 100
1 Attempt any four parts
$5 \times 4=20$
(a) Draw the block diagram for the following system with input $x(n)$ and output $y(n)$
$w(n)=x(n)+\frac{1}{2} x(n-1)$ and
$y(n)+\frac{1}{4} y(n-1)=w(n)$
(b) Obtain the cascade realization for the following system;

$$
H(z)=\frac{\left(1+\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\right)\left(1-\frac{3}{2} z^{-1}+z^{-2}\right)}{\left(1+z^{-1}+\frac{1}{4} z^{-2}\right)\left(1+\frac{1}{4} z^{-1}+\frac{1}{2} z^{-2}\right)}
$$

(c) Calculate the DFT of the sequence
$s(n)=\{2,4,2,3\}$.
(d) State and prove circular convolution property of DFT:
(e) Explain frequency transformation with LPF to HPF conversion formula.
(f) Draw a transformation matrix of size 5×5 and explain the properties of twiddle factor.

2 Attempt any four parts $\quad \mathbf{5 \times 4 = 2 0}$
(a) Determine $\mathrm{H}(\mathrm{z})$ using the impulse invariant technique for the analog system function
$H(s)=\frac{1}{(s+0.5)\left(s^{2}+0.5 s+2\right)}$
(b) Realise an FIR filter whose impulse response is $h(n)=\{1,2,5,6,3,6,5,2,1\}$ using minimum number of multipliers.
(c) Determine the response of a discrete-time system for an input signal $\mathrm{s}(\mathrm{n})=\{2,1,3,1\}$, if the unit-sample response is of the system is $h(n)=\{1,2,2,-1\}$
(d) Enumerate and explain the properties of DFT.
(e) Draw the parallel form network structure of the system with transfer function.
$H(z)=\frac{2 z(z+3)}{z^{2}+0.3 z+0.02}$
(f) What are the different window functions used for windowing ? Explain the effects of using different window functions for designing FIR filter on the filter response.
(a) Derive and draw the flow graph for DIF FFT algorithm for $\mathrm{N}=8$.
(b) Calculate the circular convolution of $s_{1}(n)=$ $\{1,2,1,2\}$ and $s_{2}(n)=\{1,2,3,4\}$ using Stockham's method.
(c) Determine $\mathrm{H}(\mathrm{z})$ for a butterworth filter satisfying the following constraints
$\sqrt{0.5} \leq \begin{array}{ll}\left|H\left(e^{j \omega}\right)\right| \leq 1 & 0 \leq \omega \leq \frac{\pi}{2} \\ \left|H\left(e^{j \omega}\right)\right| \leq 0.2 & \frac{3 \pi}{4} \leq \omega \leq \pi\end{array}$
with $\mathrm{T}=1 \mathrm{sec}$. Apply impulse invariant transformation
4 Attempt any two parts;
$10 \times 2=20$
(a) Given $\mathrm{x}(\mathrm{n})=2^{\mathrm{n}}$ and $\mathrm{N}=8$ find $\mathrm{X}(\mathrm{K})$ using DIT

FFT algorithm. Also calculate the computational reduction factor.
(b) Design a low-pass filter with the following desired frequency response
$H_{d}\left(e^{j \omega}\right)= \begin{cases}e^{-j 2 \omega}, & \frac{-\pi}{4} \leq \omega \leq \frac{\pi}{4} \\ 0, & \frac{\pi}{4}<|\omega|<\pi\end{cases}$
and using window function
$w(n)=\left\{\begin{array}{cc}1, & 0 \leq n \leq 4 \\ 0, & \text { otherwise }\end{array}\right.$
(c) Draw the Ladder structure for the system with system function
$H(z)=\frac{5 z^{-3}+2 z^{-2}+3 z^{-1}+1}{z^{-3}+z^{-2}+z^{-1}+1}$
Attempt any two parts : $\quad 10 \times 2=20$
(a) Design a digital chebyshev filter to satisfy the constraints
$0.77 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1 \quad 0 \leq \omega \leq 0.2 \pi$ $\left|H\left(e^{j \omega}\right)\right| \leq 0.1 \quad 0.5 \pi \leq \omega \leq \pi$
Using bilinear transformation with $\mathrm{T}=1 \mathrm{~s}$
(b) Convert the analog filter with system function $H(s)=\frac{s+0.1}{(s+0.1)^{2}+9}$ into digital filter with a
resonant frequency of $\omega_{r}=\frac{\pi}{4}$ of using bilinear transformation.
(c) Explain the following phenomenon's :
(i) Gibbs Oscillations.
(ii) Frequency Wraping.

