Sub Code:ECS603 NCS603

Roll No.

B. Tech.

(SEM VI) CARRY OVER THEORY EXAMINATION 2017-18 Compiler Design

Time: 3 Hours

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.2. Any special paper specific instruction.

SECTION A

1. Attempt *all* questions in brief.

a) what is translator?

b) Differentiate between compiler and assembler.

c) Discuss conversion of NFA into a DFA . also give the algorithm used in this conversion.

d) Write down the short note on symbol table.

e) Describe Data structure for symbol table .

f) What is mean by Activation record

g) What is postfix notations ?

h) Define Three address Code

i) What are Quadruples.

j) what do you mean by regular expression?

SECTION B

2. Attempt any *three* of the following:

a). Write down the regular expression for

- 1. The set of all string over {a,b} such that fifth symbol from right is a.
- 2. The set of all string over {a,b} such that every block of four consecutive symbol contain at least two zero.

b). Construct the NFA for the regular expression $a/abb/a^*b^+$ by using Thompson's construction methodology.

c). Eliminate left recursion from the following grammar

 $S \rightarrow AB$, $A \rightarrow BS \mid b$, $B \rightarrow SA \mid a$

d). Discuss conversion of NFA into a DFA . also give the algorithm used in this conversion. e). Explain non recursive predictive parsing. Consider the following grammar and construct the predictive parsing table

 $E \rightarrow TE'$ $E' \rightarrow + TE' | \in$ $T \rightarrow FT'$ $T' \rightarrow * FT' | \in$ $F \rightarrow F^* | a | b$

 $10 \ge 3 = 30$

 $2 \ge 10 = 20$

Total Marks: 100

Paper Id: 1 1 0 6 0 3

Printed Pages:02

SECTION C

3. Attempt any one part of the following:

a). Give Operator -precedence parsing algorithm. Consider the following grammar and build up operator precedence table. Also parse the input string (id+(id*id))

 $E \rightarrow E + T | T$

T→T*F|F

 $F \rightarrow (E) | id$

b). For the grammar

S→aAd |bBd |aBe |bAe $A \rightarrow f$, $B \rightarrow f$

Construct LR(1) Parsing table .also draw the LALR table from the derived LR(1) parsing table.

4. Attempt any one part of the following:

a). What is postfix notations ? translate (C+D)*(E+Y) into postfix using syntax directed translation scheme(STDS)

b). consider the following grammar $E \rightarrow E + E \mid E^*E \mid (E) \mid id$. construct the SLR parsing table and suggest your final parsing table.

5. Attempt any one part of the following:

a). Explain logical phase error and syntactic phase error . also suggest methods for recovery of error.

b). Generate three address code for C[A[I, j]] = B[I, j] + C[A[I, j]] + D[I + j] (You can assume any data for solving question, if needed) Assuming that all array elements are integer. Let A and B a 10 X 20 array with low1 =low2=1.

6. Attempt any one part of the following:

a). Give the algorithm for the elimination of local and global common Sub expression . discuss the algorithm with the help of example also.

b). consider the following three address code segments

PROD := 0

1 = 1

T1:=4*I

T2:=addr(A)-4

T3:=T2[T1]

T4:=addr(B)-4

T5:=T4[T1]

T6:=T3*T5

PROD:=PROD +T6

|:=|+1

If i <= 20 goto (3)

- a. Find the basic blocks and flow graph of above sequence.
- b. Optimize the code sequence by applying function preserving transformation and loop optimization technique.

 $10 \ge 1 = 10$

 $10 \ge 1 = 10$

 $10 \ge 1 = 10$

7. Attempt any *one* part of the following:

a). . Write short note on

- i. Loop optimization
- ii. Global data analysis

b). . Write short note on

- i. Direct acyclic graph
- ii. YACC parser generator