Roll No. $\square$

## B. Tech. <br> (SEM VI) CARRY OVER THEORY EXAMINATION 2017-18

## Compiler Design

Total Marks: 100
Time: 3 Hours
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
2. Any special paper specific instruction.

## SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$
a) what is translator?
b) Differentiate between compiler and assembler.
c) Discuss conversion of NFA into a DFA . also give the algorithm used in this conversion.
d) Write down the short note on symbol table.
e) Describe Data structure for symbol table .
f) What is mean by Activation record
g) What is postfix notations ?
h) Define Three address Code
i) What are Quadruples.
j) what do you mean by regular expression?

## SECTION B

2. Attempt any three of the following:
$10 \times 3=30$
a). Write down the regular expression for
3. The set of all string over $\{\mathrm{a}, \mathrm{b}\}$ such that fifth symbol from right is a.
4. The set of all string over $\{\mathrm{a}, \mathrm{b}\}$ such that every block of four consecutive symbol contain at least two zero.
b). Construct the NFA for the regular expression $\mathrm{a} / \mathrm{abb} / \mathrm{a}^{*} \mathrm{~b}^{+}$by using Thompson's construction methodology.
c). Eliminate left recursion from the following grammar

$$
S \rightarrow A B, A \rightarrow B S|b, B \rightarrow S A| a
$$

d). Discuss conversion of NFA into a DFA . also give the algorithm used in this conversion.
e). Explain non recursive predictive parsing. Consider the following grammar and construct the predictive parsing table
$E \rightarrow T E^{\prime}$
$E^{\prime} \rightarrow+T E^{\prime} \mid €$
$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$
$\mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{FT}^{\prime} \mid €$
$F \rightarrow F^{*}|a| b$

## SECTION C

## 3. Attempt any one part of the following:

a). Give Operator - precedence parsing algorithm. Consider the following grammar and build up operator precedence table. Also parse the input string (id+(id*id))
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$T \rightarrow T^{*} \mathrm{~F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{id}$
b). For the grammar

$$
\mathrm{S} \rightarrow \mathrm{aAd}|\mathrm{bBd}| \mathrm{aBe} \mid \mathrm{bAe} \quad \mathrm{~A} \rightarrow \mathrm{f}, \mathrm{~B} \rightarrow \mathrm{f}
$$

Construct LR(1) Parsing table .also draw the LALR table from the derived LR(1) parsing table.

## 4. Attempt any one part of the following:

a). What is postfix notations ? translate $(C+D)^{*}(E+Y)$ into postfix using syntax directed translation scheme(STDS)
b). consider the following grammar $E \rightarrow E+E|E * E|(E) \mid$ id . construct the SLR parsing table and suggest your final parsing table.
5. Attempt any one part of the following:
a). Explain logical phase error and syntactic phase error . also suggest methods for recovery of error.
b). Generate three address code for $C[A[I, j]]=B[I, j]+C[A[I, j]]+D[I+j]$ (You can assume any data for solving question, if needed) Assuming that all array elements are integer. Let A and B a $10 \times 20$ array with low1 =low2=1.
6. Attempt any one part of the following:
$10 \times 1=10$
a). Give the algorithm for the elimination of local and global common Sub expression . discuss the algorithm with the help of example also.
b). consider the following three address code segments

PROD := 0
$\mathrm{I}:=1$
T1:=4*|
T2:=addr(A)-4
T3:=T2[T1]
T4:=addr(B)-4
$\mathrm{T} 5:=\mathrm{T} 4[\mathrm{~T} 1]$
T6:=T3*T5
PROD:=PROD +T6
I:=I+1
If $\mathrm{i}<=20$ goto (3)
a. Find the basic blocks and flow graph of above sequence.
b. Optimize the code sequence by applying function preserving transformation and loop optimization technique.
7. Attempt any one part of the following:
a). . Write short note on
i. Loop optimization
ii. Global data analysis
b). . Write short note on
i. Direct acyclic graph
ii. YACC parser generator

