

							Sub	ject	Code:	KCE	064
Dall No.		Ī									
KOH INO:	1 1	1	i	1	1 1 1	1					

BTECH (SEM VI) THEORY EXAMINATION 2021-22 FOUNDATION DESIGN

Time: 3 Hours

Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

2*10 = 20

Printed Page: 1 of 2

O.no	Questions	CO
(a)	Enlist the various field methods to determine bearing capacity of soil?	1
(b)	Define area ratio?	1
(c)	Write the factors affecting bearing capacity of soil?	2
(d)	Write the equation for the ultimate bearing capacity.	2
(e)	Describe various types of pile foundation.	3
(f)	Define battered Pile.	3
(g)	Describe "Steining" in Well Foundation.	4
(h)	Write down the forces acting on well foundation.	4
(i)	What do you understand by soil reinforcement?	5
(j)	Write down the two practical application of sheet pile.	5

SECTION B

2. Attempt any three of the following:

10*3 = 30

O.no		Que	stions	i. C hias ishini shudhi i sabh masarini ka		CO
(a)	Describe various me	thods of	drilling	holes	for subsurface	1
(-)	investigations.					<u> </u>

		_
(b)	A strip footing, 1m wide at its base is located at a depth of 0.8m below	2
(-)	the ground surface. The properties of the foundation are unit weight of	
	soil is $18kN/m^3$, $c = 30kN/m^2$ and angle of internal friction is 20° .	
	Determine the safe bearing capacity, using a factor of safety of 3. Use	
	Terzaghi's analysis. Assume that the soil fails by local shear.	
	A pile group consists of 9 friction piles of 30cm diameter and 10m	3
(c)	A pile group consists of 9 method piles of social (v) = 20	
1	length driven in clay ($c_u = 100 \text{kN/m}^2$, unit weight of soil (γ) = 20	
	kN/m ³), centre to centre spacing is 0.75m arranged in a square pattern.	
	Determine the safe load for the group (F.O.S = 3, α = 0.6)	
(4)	Discuss the principles of design of footings.	4
(d)	Discuss the principles of design of roomige.	5
(e)	Discuss the geophysical methods of soil explorations?	1 2

SECTION C

3. Attempt any one part of the following:

10*1 = 10

C	1			uestions	Qı	*		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		O.no
1	rrections?	various con	e the	t. What are	on tes	ratio	penetr	standard	Describe	(a)
. 1	undisturbed	obtaining	for	samplers	soil	of	types	various	Discuss	(b)
d	undisturbe	obtaining	for	samplers	soil	of	types	various	Discuss samples.	(b)

		Pri	nted Page: 2 of 2
99	, ë	Subject	Code: KCE064
Roll No:			

BTECH (SEM VI) THEORY EXAMINATION 2021-22 FOUNDATION DESIGN

4. Attempt any *one* part of the following:

10 *1 = 10

Q.no	Questions	CO
(a)	A footing 2m square is laid at a depth of 1.3m below the ground surface. Take unit weight of soil as $18kN/m^3$, angle of internal friction (Φ) = 30^0 and c= 0. Determine the net ultimate bearing capacity using Terzaghi's method if a) The water table rises to the level of the base. b) The water table is 1m below the base.	2
(b)	A circular footing is resting on a stiff saturated clay of q_u =250 kN/m². The depth of foundation is 2m. Determine the diameter of the footing if the column load is 600kN.Assume factor of safety=2.5, unit weight of soil is 20 kN/m³?	2

5. Attempt any *one* part of the following:

10*1 = 10

Q.no	Questions	CO
(a)	A concrete pile, 9m long was driven by a single acting Vulcan	3
	Hammer with rated energy 35.26kJ, the total settlement as recorded for	
	the last 10 blows was 2.5 mm/blow. Using Engineering News formula,	
	calculate the pile capacity.	
(b)	A nine-pile group arranged in a square pattern is used as a foundation	[®] 3
	for a column in sand ($\Phi^* = 32^\circ$), piles 300 mm in diameter and 10m in	
	length, are placed at a spacing of 900mm in each direction. Calculate	
	the ultimate load capacity of the pile group. Assume that the unit	
	weight of soil is $18kN/m^3$. Take $N_q = 27$.	

6. Attempt any one part of the following:

10*1 = 10

Q.no	Questions	СО
(a)	What are different shapes of wells? Describe the characteristics of each type.	4
(b)	What is a retaining wall? Write down its applications. Explain any two types of retaining structures.	4

7. Attempt any *one* part of the following:

10*1 = 10

Q.no	Questions	CO
(a)	What are the types of Soil reinforcements? Explain geotechnical properties of reinforced soil.	5
(b)	Describe the elastic models of soil behaviour and their limitations in detail.	5