\square

BTECH

(SEM VI) THEORY EXAMINATION 2021-22 COMPUTER BASED NUMERICAL TECHNIQUES
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

$$
2 * 10=20
$$

Q.no	Questions	Marks	CO
(a)	Define Rate of convergence of Bisection method	2	1
(b)	Add and Subtract the following floating point numbers: $0.78596 \mathrm{E}-2$ and 0.78633E1	2	1
(c)	Evaluate $\Delta^{\mathrm{n}}\left(\mathrm{e}^{3 \mathrm{x}+5}\right)$	2	2
(d)	Write the relation between Divided differences and ordinary differences.	2	2
(e)	Write the formula of generalized Simpson's 1/3 Rule.	2	3
(f)	Find differentiation of Newton's forward difference formula	2	3
(g)	Define Predictor Corrector method.	2	4
(h)	Define Stability of solution.	2	4
(i)	Classify $u_{x x}+3 u_{x y}+u_{y y}=0$	2	5
(j)	Define eigen vector of a matrix.	2	5

SECTION B

2. Attempt any three of the following:
$10 * 3=30$

Q.no	Questions						Ma	CO
(a)	Using Regula Falsi Method find the real root of the equation $x^{3}-4 x-9=$ 0 upto 3 iteration.						10	1
(b)	Using Lagrange interpolation formula, calculate $f(3)$ from the following table:$\begin{array}{lrrrrrr} \mathrm{x}: & 0 & 1 & 2 & 4 & 5 & 6 \\ \mathrm{f}(\mathrm{x}): & 1 & 14 & 15 & 56 & 30 & 19 \\ \hline \end{array}$						10	2
(c)	The velocity of a car which start initially from rest at interval of 2 minutes are given below						10	3
	Time (minutes)	2	4	6	10	12		
	Velocity ($\mathrm{Km} / \mathrm{hr}$)	22	30	27 亿 18	7	0		
	Apply Simpson's $3 / 8^{\text {th }}$ rule to find the distance covered by car							
(d)	Find the value of $\mathrm{y}(1.1)$ using Runge-Kutta method of fourth order for the differential equation : $\frac{d y}{d x}=y^{2}+x y, y(1)=1.0$. Take $\mathrm{h}=0.05$						10	4
(e)	Explain finite difference, method to the solution of Boundary value problemof second order.						10	5

SECTION C

3. Attempt any one part of the following:
$10 * 1=10$

Q.no	Questions	Marks	CO
(a)	If $u=\frac{4 x^{2} y^{3}}{z^{4}}$ and errors in x, y, z be 0.001, compute the relative maximum error in u when $x=y=z=1$	10	
(b)	Calculate $\sqrt{12}$ approximately using Newton-Raphson method.	10	1

Roll No: \square
BTECH
(SEM VI) THEORY EXAMINATION 2021-22 COMPUTER BASED NUMERICAL TECHNIQUES
4. Attempt any one part of the following
$10 * 1=10$

Q.no	Questions			Marks
CO				
(a)	Prove that $\Delta \log f(x)=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]$	10	2	
(b)	Construct Newton forward interpolation polynomial for the datax 4 6 8 10 y 1 3 8 16 Hence evaluated y for $\mathrm{x}=5$.	10	2	

5. Attempt any one part of the following:
$10 * 1=10$

Q.no	Questions	Marks	CO
(a)	Compute $\mathrm{f}^{\prime}(\mathrm{x})$ at $\mathrm{x}=16$ from the given data $\mathrm{x}:$ 15 17 19 21 $\mathrm{f}(\mathrm{x})=\sqrt{x}:$ 3.87 4.12 4.35 4.58	10	3
(b)	Find the value of the integral using trapezoidal rule, taking $\mathrm{h}=0.25$ $\int_{0}^{1} \frac{d x}{1+x^{2}}$	10	3

6. Attempt any one part of the following:

$$
10 * 1=10
$$

Q.no	Questions	Marks	CO
(a)	Use Picard's method; obtain the solution of the equation $\frac{d y}{d x}=x\left(1+x^{3} y\right), y(0)=3$.	10 Compute the value of $y(.1) a n d y(.2)$	4
(b)	Write the algorithm of Euler's method to the solution of ordinary differential equation.	10	4

7. Attempt any one part of the following:

10*1 = 10

Q.no	Questions	Marks	CO
(a)	Explain Explicit method to solve parabolic one dimensional Heat equation	10	5
(b)	Using Power method, find Eigen values and Eigen vector of A	10	5
	$\mathrm{~A}=\left[\begin{array}{cr}4 & 1 \\ -1 & 6\end{array}\right]$		

