

Printed Page: 1 of 2
Subject Code: KOE065
Roll No:

BTECH (SEM VI) THEORY EXAMINATION 2021-22 COMPUTER BASED NUMERICAL TECHNIQUES

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

2*10 = 20

Q.no	Questions	Marks	CO
(a)	Define Rate of convergence of Bisection method	2	1
(b)	Add and Subtract the following floating point numbers:	2	1
	0.78596E-2 and 0.78633E1		
(c)	Evaluate $\Delta^n(e^{3x+5})$	2	2
(d)	Write the relation between Divided differences and ordinary differences.	2	2
(e)	Write the formula of generalized Simpson's 1/3 Rule.	2	3
(f)	Find differentiation of Newton's forward difference formula	2	3
(g)	Define Predictor Corrector method.	2	4
(h)	Define Stability of solution.	2	4
(i)	Classify $u_{xx} + 3u_{xy} + u_{yy} = 0$	2	5
(j)	Define eigen vector of a matrix.	2	5

SECTION B

2. Attempt any three of the following:

10*3 = 30

ALLCIN	pt any mire of the following.	5 50	
Q.no	Questions	Mark	CO
		S	
(a)	Using Regula Falsi Method find the real root of the equation $x^3 - 4x - 9 =$: 10	1
	0 upto 3 iteration.		
(b)	Using Lagrange interpolation formula, calculate f(3) from the following	g 10	2
	table:		
	x: 0 1 2 4 5 6		
	f(x): 1 14 15 56 30 19		
(c)	The velocity of a car which start initially from rest at interval of 2 minutes are	10	3
	given below		
	Time (minutes) 2 4 6 8 10 12		
	Velocity (Km/hr) 22 30 27 18 7 0		
	Apply Simpson's 3/8 th rule to find the distance covered by car		
(d)	Find the value of $y(1.1)$ using Runge-Kutta method of fourth order for the	10	4
, ,	$dv \sim 2$		
	differential equation : $\frac{dy}{dx} = y^2 + xy$, $y(1) = 1.0$. Take h=0.05		
()		10	-
(e)	Explain finite difference method to the solution of Boundary value problem	ı 10	5
	of second order.		

SECTION C

3. Attempt any *one* part of the following:

10*1 = 10

Q.no	Questions	Marks	CO
(a)	If $u = \frac{4x^2y^3}{z^4}$ and errors in x, y, z be 0.001, compute the relative maximum error in u when $x = y = z = 1$	10	1
(b)	Calculate $\sqrt{12}$ approximately using Newton-Raphson method.	10	1

Printed Page: 2 of 2
Subject Code: KOE065
Roll No:

BTECH (SEM VI) THEORY EXAMINATION 2021-22 COMPUTER BASED NUMERICAL TECHNIQUES

4. Attempt any *one* part of the following: 10 *1 = 10

		•							
Q.no		Questions							
(a)	Prov	Prove that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$						10	2
(b)	Cons	Construct Newton forward interpolation polynomial for the data							2
		X	4	6	8	10			
		у	1	3	8	16			
	Heno	e ev	valua	ted y f	for $x=5$.				

5. Attempt any *one* part of the following: 10*1 = 10

Q.no	Questions	Marks	CO
(a)	Compute $f'(x)$ at $x=16$ from the given data	10	3
	x: 15 17 19 21		
	$f(x) = \sqrt{x}$: 3.87 4.12 4.35 4.58		
(b)	Find the value of the integral using trapezoidal rule, taking h=0.25	10	3
	$\int_{0}^{1} dx$		
	$\int_{0}^{\infty} \frac{1+x^{2}}{1+x^{2}}$		

6. Attempt any *one* part of the following: 10*1=10

11000111	prumy one pure or the rono wing.	_ \ = \	
Q.no	Questions	Marks	CO
(a)	Use Picard's method; obtain the solution of the equation	10	4
	$\frac{dy}{dx} = x(1+x^3y), y(0) = 3.$		
	Compute the value of $y(.1)$ and $y(.2)$		
(b)	Write the algorithm of Euler's method to the solution of ordinary differential	10	4
	equation.		

7. Attempt any *one* part of the following: 10*1 = 10

Q.no	Questions	Marks	CO
(a)	Explain Explicit method to solve parabolic one dimensional Heat equation	10	5
(b)	Using Power method, find Eigen values and Eigen vector of A $A = \begin{bmatrix} 4 & 1 \\ -1 & 6 \end{bmatrix}$	10	5