

				Printed Page: 1 of 2							
					Sub	ject	Cod	le: F	KEC	C601	
Roll No:											

BTECH (SEM VI) THEORY EXAMINATION 2021-22 DIGITAL COMMUNICATION

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	TION-A Attempt All of the following Questions in brief Marks(10X2=20)								
Q1(a)	A die is th	rown. Determine the probability that an even number comes	s up.	1					
Q1(b)	Define rar	ndom variable.		1					
Q1(c)	Q1(c) Briefly explain inter symbol interference.								
Q1(d)	Ol(d) Draw waveform for NRZ- unipolar code for 101101.								
Q1(e)	For an ide	al binary ASK, data is transmitted with 64kbps, find the ban	dwidth.	3					
Q1(f)	Discuss th	e application of ASK modulation.		3					
Q1(g)	Briefly ex	plain any one property of a matched filter.		4					
Q1(h)	Define bit	error rate.		4					
Q1(i)	Briefly ex	plain information.		5					
Q1(j)	Find the	entropy for three messages with their probabilities 1/2	$\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$	5					
	respective	ly.							

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	CO
Q2(a)	The prol	bability density function is given as $f_{x}(x) = ae^{-t}$	^{b/ x/} , where X is a	× 1
	random	variable, whose allowable values range from $x =$	$=-\infty$ to $x=+\infty$.	
	Find:	071	1.3	
	i) Rela	ationship between a and b		
	ii) Auto	ocorrelation		
Q2(b)		ort Notes on any two of the following: ous NRZ line coding of data 11001101 diagram		2
		n-Schmidt orthogonalization procedure		
Q2(c)		the PSK modulation and demodulation with suitable as. Compare the BPSK system with DPSK system.	block diagram and	3
Q2(d)		matched filter with suitable diagram? Prove that implifilter is proportional to a shifted version of the input sign		4
Q2(e)	entropies	ntropy and mutual information? Prove the relationship $H(X/Y) + H(Y)$	p between different	5

SECT	ION-C Attempt ANY ONE following Question	Marks (1 X10=10)	CO
Q3(a)	Differentiate between wide sense stationary and strict	sense stationary random	1
	processes? Find the mean and variance of the sum of tw	vo random variables if the	
	mean of one of the two random variables is zero. Assun	ne the random variables as	
	per convenience.		
Q3(b)	Discuss Gaussian random process with central limit theorems.	orem along with a suitable	1
	example and diagram.	-	

PAPER ID-420394

	Printed Page: 2 of												2 of 2		
							Subject Code: KEC60								
Roll No:															

BTECH (SEM VI) THEORY EXAMINATION 2021-22 DIGITAL COMMUNICATION

SECT	ON-C Attempt ANY ONE following Question Marks (1X10=1	0)	CO
Q4(a)	Explain the function of scrambler and descrambler with neat block diagram. Give	an	2
	example with a sequence generated.		
Q4(b)	Draw and explain function of each block in digital communication system. A	so	2
	state the need of pulse shaping.		

SECT	CTION-C Attempt ANY ONE following Question		Marks (1X10=10)	CO
Q5(a)	How does	s the QPSK modulator transmit digital data over cha	nnel? Also explain the	3
	demodula	tion process of the QPSK modulated signal from an	ideal channel.	
Q5(b)	Explain Q	AM system with suitable block diagram and constel	lation diagram.	3

SECT	ION-C	Attempt ANY ONE following Question	Marks (1 X10=10)	CO
Q6(a)	Derive the	e expression for probability of error in FSK modul	ation system. Mention	4
	all the ass	umed parameters clearly. Why is it better than ASK	?	
Q6(b)	Describe t	he spread spectrum modulation with FHSS and DSS	SS.	4

	Attempt Al	NY ONE	follo	wing	Que	estio	n				Marks (1X10=10)	CO
7(a) The parity								blo	ck co	de i		5
			1	0	1	1	:	1	0	0		X.
		[H]=	1	1	0	1	:	0	1	0	1.55.	
		Į	0	1	1	1	:	0	0	1_	13	
i) Find	the generate	or matrix	(G).									
/	all the code											
	t is the mini											
							-			- 1	n ₃ , m ₄ and m ₅ with	5
-								-		•	Calculate the entropy	
and avera	ge length of	f the code	e. Als	so ex	cplai	in th	e pi	roce	dure	for	finding the code.	
						2	3	2				