Roll No:

\square

Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTIO	ION-A	Attempt All of the following Questions in brie	Marks(10X2=2	CO
Q1(a) A	A coin is flipped thrice. Determine the probability of getting two heads.			1
Q1(b) D	Define probability mass function.			
Q1(c) D	Differentiate between noise and inter symbol interference.			2
Q1(d)	Draw waveform of NRZ- polar code for a digital message 111101			2
Q1(e) W	Why is scrambling done?			3
Q1(f) D	Draw waveform of ASK modulated signal for a data string 111010			
Q1(g) W	What is the probability of error of a matched filter?			
Q1(h) D	Define transmission data rate.			
Q1(i)	What is mutual information?			5
Q1(j)F a	Find average length of three messages 0,10 and 111 with their probabilities $1 / 2,1 / 4$ and $1 / 4$ respectively.			5
)			
SECTIO	ION-B	Attempt ANY THREE of the following Quest	Marks(3X10=30)	
Q2(a)	Prove that power spectral density and autocorrelation are Fourier transform pairs.			
Q2(b) W	Write Short Notes on any two of the following: i) Various line coding properties ii) Gram-Schmidt orthogonalization procedure iii) Eye diagram			2
Q2(c) $\begin{aligned} & \text { E } \\ & \\ & \text { W }\end{aligned}$	Explain the DPSK modulation and demodulation with suitable block diagram and waveforms. Compare it with BPSK system.			3
Q2(d) $\begin{aligned} & \text { D } \\ & \text { m } \\ & \text { m }\end{aligned}$	Describe matched filter with suitable diagram? Prove that impulse response of a matched filter is proportional to a shifted version of the input signal to which filter is matched.			4
Q2(e)B b	Briefly explain entropy, average length and redundancy. Prove the relationshi between different entropies $\mathrm{H}(\mathrm{XY})=\mathrm{H}(\mathrm{Y} / \mathrm{X})+\mathrm{H}(\mathrm{X})$			5

SECTION-C Attempt ANY ONE following Question Marks (1X10=10) CO

Q3(a) Differentiate between wide sense stationary and strict sense stationary random 1 process. Also briefly explain statistical averages of continuous random process.
Q3(b) Explain Gaussian random process and relate central limit theorem to it with a 1 suitable example.

Q4(a)	What is the Nyquist criterion for zero ISI in pulse shaping? Explain the pulse shapes required to fulfill the condition.	2
Q4(b)	Explain the function of scrambler and unscramble with neat block diagram.	2

\(\left.\begin{array}{|l|l|c|c|}\hline SECTION-C Attempt ANY ONE following Question Marks (1X10=10) \& CO

\hline Q5(a) \& Explain QAM system with suitable block diagram and constellation diagram.\end{array}\right]\)| Q5(b) |
| :--- |
| How does the QPSK modulator transmit digital data over channel? Also explain the
 demodulation process of the QPSK modulated signal from an ideal channel. |

Roll No: \square
BTECH
(SEM VI) THEORY EXAMINATION 2021-22
DIGITAL COMMUNICATION

| SECTION-C Attempt ANY ONE following Question | Marks (1X10=10) | CO |
| :--- | :--- | :--- | :---: |
| Q6(a) | Derive the expression for probability of error in ASK modulation system. Notify all
 the assumed parameters clearly. Why is it not better than FSK? | 4 |
| Q6(b) | Describe the spread spectrum modulation with FHSS and DSSS with suitable
 diagrams involved. | 4 |

SECTION-C Attempt ANY ONE following Question \quad Marks $(\mathbf{1 X 1 0}=\mathbf{1 0}) \quad$ CO
Q7(a) \quad Design and explain an encoder for a block code of $(7,4)$ generating matrix $g(x)=5$ $1+x+x^{3}$ and data signal 1110. Also find the systematic code for a string 0111.
Q7(b) Construct Shannon Fanocode for six messages $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ and m_{6} with 5 probabilities $1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 32$, respectively. Calculate the entropy and average length of the codes.

