

Printed Pages: 2

TEC13

(Following Paper ID and Roll No. to	be fill	ed in y	your A	nswer l	Book)
PAPER ID: 0308 Roll No.					

B. Tech

(SEM VII) ODD SEMESTER THEORY EXAMINATION 2009-10 ARTIFICIAL NEURAL NETWORKS

Time: 3 Hours]

[Total Marks: 100

- Note: (1) Attempt any two parts from each question.
 - (2) All questions carry equal marks.
- 1 (a) Define Artificial Neural Network (ANN). In what ways does ANN resemble the brain.
 - (b) Classify the nets based on their architecture. Differentiate single layer and multi layer networks.
 - (c) What are the types of learning? Explain the Hebbian learning and Boltzmann learning.
- 2 (a) Explain the working of the perceptron .net. Also differentiate the feed forward and feedback architecture
 - (b) Describe the following:
 - (i) Convex sets and Convex hulls
 - (ii) Binary neurons for pattern clssification
 - (iii) Capacity of TLN.
 - (c) State the pocket algorithm. Also explain the α LMS learning and MSE error surface.

- 3 (a) Draw and explain the multilayered architecture.
 Also explain feed for forward network and its applications.
 - (b) Write short notes on the following:
 - (i) μ -LMS and application
 - (ii) Structure growing algorithms
 - (iii) Reinforcement learning
 - (c) What is the activation function used in a BPN? How is the error back propagated in a BPN?
- 4 (a) Explain the Bayesian classification rule is used in probabilistic neural net. Also explain the posterior probabilities.
 - (b) Discuss the RBF network and activation function used in RBF network. Also describe the multilayer perceptrons.
 - (c) What are stochastic machines? Describe the application algorithm used in Boltzmann machine.
- 5 (a) Briefly explain the ART architecture. Also explain the generalized learning laws.
 - (b) Explain the following:
 - (i) Principal Component Analysis
 - (ii) Vector Quantization
 - (iii) Maxican hat networks.
 - (c) Differentiate fuzzy sets with traditional sets. Also explain the fuzzy logic system technique using suitable diagram.