Printed Pages : 4 TCS34				
(Following Paper ID and Roll No. to be filled in your Answer Book)				
PA	PEP	RID: 0108 Roll No.		
B.Tech				
(SEM VII) ODD SEMESTER THEORY EXAMINATION 2009-10				
DATA COMPRESSION				
Time	: 3	Hours] [Total Marks: 10	0	
Note	6 0	(i) Attempt all questions.		
		(ii) All questions carry equal marks.		
		(iii) Assume data wherever not provided.		
	·	(iv) Be precise in your answer.		
1	A			
1	Att (a)	empt any four of the following : 5×4= Explain compression and reconstruction with	20	
	(a)	the help of block diagram.		
	(b)			
		uniquely decodable :		
		(i) {0, 10, 110, 111}		
		(ii) {1, 10, 110, 111}		
	(c)			
		find the first order entropy in the following		
		cases :		
n		(i) $P(a_1) = P(a_2) = P(a_3) = P(a_4) = \frac{1}{4}$		
		(ii) $P(a_1) = \frac{1}{2}, P(a_2) = \frac{1}{4}, P(a_3) = P(a_4) = \frac{1}{4}$	$\frac{1}{8}$	

1

JJ-0108]

Anticipation of the second sec

[Contd...

- (d) Comment upon the statement "Compression is still largely an art and to gain proficiency in an art you need to get a feel for the process."
- (e) Differentiate between static length and variable length coding schemes.
- (f) What is zero frequency model in Markov models in text compression ?
- 2 Attempt any four of the following :

5×4=20

3

- (a) How Rice code can be viewed ? Explain the implementation of the rice code in the recommendation for loss less compression from the consultive committee on space data standard.
- (b) Design a Golomb code for m = 5 where values of n are 0, 1,10.
- (c) Generate Huffman code for a source

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$
 with

probability model

$$P(a_1) = P(a_3) = P(a_4) = 0.2$$
,

$$P(a_{0}) = 0.25, P(a_{5}) = 0.05$$
 and

 $P(a_6) = 0.1$

JJ-0108] 2

[Contd...

(d) Explain adaptive Huffman coding. How is it different from conventional Huffman coding ?

- (e) Explain self information defined by Shannon.
- (f) What do you understand by information and entropy ? Discuss the relationship between them.
- Attempt any four of the following :

5×4=20

- (a) What is facsimile encoding ? Explain run length coding technique used earlier for facsimile.
- (b) How LZ 77 algorithm works? What are the problems with LZ 77? Explain with an example.
- (c) A sequence is encoded using LZW algorithm and the initial dictionary shown in the table :

Index	Entry
1	a
2	b
3	r
4	t

The output of LZW encoder is following sequence 3, 1, 4, 6, 8, 4, 2, 1, 2, 5, 10, 6, 11, 13, 6 decode this sequence.

(d) What are adaptive compression schemes ? What is the basic difference between adaptive and statistical compression scheme ? Discuss with the model of adaptive compression.

JJ-0108]

[Contd...

- (e) Discuss two probability models commonly used in design and analysis of lossy compression system.
- (f) What is Rice code ? How it is different from Golomb code ?
- 4 Attempt any two of the following :
 - (a) What do you understand by uniform quantizer? How uniform quantization of a uniformly distributed source and uniform quantization of non uniform sources is done?
 - (b) Discuss the steps involved in Basic algorithm for Prediction with Partial Match (PPM).
 - (c) Describe tree structured vector quantizers.
 - Attempt any two of the following :

5

- (a) Discuss the Linde-Buze-Gray algorithm in detail.
- (b) what is quantization ? Explain additive noise .
 model of a quantizer. Differentiate between scalar quantization and vector quantization.
 Discuss the advantages of vector quantization over scalar quantization.
- (c) What do you understand by predictive coding ? Discuss multi resolution approaches.

[3700]

 $10 \times 2 = 20$

 $10 \times 2 = 20$