(Following Paper ID and Roll No. to be filled in your Amswer Book)
PAPER ID: 0315 Roll No. \square
B.Tech
(SEM VII) ODD SEMESTER THEORY EXAMINATION 2009-10 digital CONTROL ENGINEERING

Time: 3 Hours]
[Total Marks: 100
Note : Attempt all questions.
1 Attempt any four parts of the following : 5×4
(a) With the help of a neat schematic diagram explain the working principle of a dual slope type ADC .
(b) Find the z-transform of the following sequence in closed form

$$
f(k)=e^{-k} \sin 2 k
$$

(c) Find the z-transform of the function whose Laplace transform is given as

$$
F(s)=\frac{2(s+1)}{s(s+5)}
$$

(d) Find the inverse z-transform of

$$
F(z)=\frac{z(z+1)}{(z-1)\left(z^{2}-z+1\right)}
$$

(e) For the system shown below in fig. 1 find the output at the sampling instants $c(k t)$. The input is a unit impulse and the sampling period is 0.1 s .

Fig. 1
(f) With the help of suitable diagrams explain the principle of operation of a $R-2 R$ type $D A C$.

2 Attempt any four parts of the following :
(a) Solve the following linear difference equation using z -transforms

$$
2 c(k+2)-0.1 c(k+1)-0.2 c(k)=r(k+1)+r(k)
$$

where $r(k)=$ unit step sequence and $c(0)=0$
and $c(1)=0$.
(b) By means of Jury's stability test, determine the stability of the sampled data control system with the following characteristic equation:

$$
2 z^{4}+z^{3}+z^{2}+z+1=0
$$

(c) For the sampled data control system shown below determine $\frac{c(z)}{R(z)}$ if possible. Else determine $c(z)$.

Fig. 2
(d) If $Q(z)=z^{3}-4 z^{2}+5 z-2=0$ represents a characteristic equation and $T=2 s$, then apply the Routh stability criterion to determine if any of the roots of the characteristic equation lie outside the unit circle.
(e) Map the following s-plane values into the z-plane for $T=1 \mathrm{~s}$ and 0.001 s . Give the z-plane values in both polar and rectangular co-ordinates:
(i) $s_{1}=-0.5+j 0.5$
(ii) $s_{2}=-2$
(f) Briefly explain the design of w-plane.

3 Attempt any two parts of the following: 10×2
(a) Write the state equations and output equations of the following difference equation
$c(k+4)+2 c(k+2)-c(k-1) c(k)=5 u(k)$
(b) Decompose the following transfer function by parallel decomposition. Also draw the state diagram and write the discrete state equations in vector-matrix form.

$$
\frac{c(z)}{R(z)}=\frac{z-0.1}{(z-0.5)(z-0.8)}
$$

(c) Given the state equation $x(k+1)=A x(k)$
find the state transition matrix $\phi(k)$ when $A=\left[\begin{array}{cc}0 & 1 \\ 0.5 & 1\end{array}\right]$

4 Attempt any two parts of the following :
(a) Let $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right] ; B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Find the state - feedback G such that the Eigen values of $A-B G$ are at 0 and 0.3
(b) Investigate the controllability and observability of the following system :

$$
\begin{aligned}
x(k+1) & =\left[\begin{array}{cc}
1 & -2 \\
1 & -1
\end{array}\right] x(k)+\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] x(k)
\end{aligned}
$$

(c) Write short notes on the following :
(i) Liapanov stability analysis
(ii) Stochastic optimal state estimation.

5 Attempt any two parts of the following : 10×2
(a) Discuss the important specifications of a sample and hold circuit. With the help of suitable diagrams describe its principle of operation.
(b) Using the assembly language of $8085 \mu p$, develop the program for a digital PID controller.
(c) Describe digital quantisation. How does it affect the operation of a digital control system ?-Discuss.

