(Following Paper ID and Roll No. to be filled in your Answer Book) Roll No.

B.Tech.

(SEM VII) ODD SEMESTER THEORY EXAMINATION 2009-10 NANO TECHNOLOGY

Time: 3 Hours]
[Total Marks: 100
Note : (i) Attempt all questions.
(ii) All questions carry equal marks.
(iii) Be precise in your answer:
(iv) No second answer book will be provided.

1 Attempt any four parts of the following
$5 \times 4=20$
(a) Discuss the possibility of observing the negative differential conductivity effect in a bulk semiconductor crystal.
(b) Define Bravais lattice and describe the condition when two Bravais lattice are equivalent.
(c) What will happen when exciton interacts with another excition?
(d) Enlist the applications of Nano technology.
(e) What are the applications of crystallography in material engineering ?
(t$)$ Write a note on optical spectroscopy.
2 Attempt any two parts of the following : $\quad \mathbf{1 0 \times 2 = 2 0}$
(a) Describe transmission electron microscope. Also write the applications and drawbacks of TEM. What are the differences between SEM and TEM ?
(b) Define and explain the Nano clusters. What is magnetic Nano particles ? Describe its properties and its applications.
(c) Write a note on synthesis of Nano particles.

3 Attempt any two parts of the following $10 \times 2=20$
(a) Is a carbon Nano tube a fullerene ? Explain in detail. Enlist the properties of carbon Nano tubes.
(b) What kind of ring structures are present in C_{60} ? Discuss its superconductivity properties.
(c) Give the industrial applications of carbon Nano tubes in detail.

4 Attempt any two parts of the following
$10 \times 2=20$
(a) What are solid disordered Nano structures? Also discuss their properites.
(b) Define magnetic Nano particles. Enlist its properties and explain in detail the applications.
(c) (i) What are Ferro-fluids ? Discuss their applications.
(ii) Write a note on Nano devices.

5 Attempt any two parts of the following : $\quad 10 \times 2=20$
(a) Write in detail about NEMS.
(b) Write notes on (i) Excitons (ii) Infrared Detectors.
(c) Write notes on (i) applications of X-ray spectroscopy, (ii) molecular and super-molecular switches.

