Printed Pages-3

ECS072

Following Paper ID and	nd Roll No. to b	e filled in yo	our Answer	r Book)
PAPER ID : 2709	Roll No.	1.9 (36) 11 (6)	w.del	

B.Tech.

(SEM. VII) THEORY EXAMINATION 2011-12

COMPUTATIONAL COMPLEXITY

Time : 3 Hours

Total Marks : 100

 $(10 \times 2 = 20)$

Note :- Attempt all questions.

- 1. Attempt any two parts of the following :
 - (a) What are the different models of computation ? Describe these models in comparative manner.
 - (b) Prove or disprove the following conjectures :
 - (i) f(n) = O(g(n)) implies g(n) = O(f(n))
 - (ii) $f(n) + g(n) = \theta (\min(f(n), g(n)))$
 - (iii) f(n) = O(g(n)) implies 2 $f^{(n)} = O(2^{g(n)})$

where f(n) and g(n) are asymptotically positive functions.

- (c) Are the following sets closed under the following operation. Prove your answer :
 - (i) FIN (the set of finite languages) under the function odds L, defined on languages as follows :

odds (L) = {w : $\exists x \in L(w = odds(x)))$ }.

1

(ii) INF(the set of infinite languages) under the function odds L.

ECS072/KIH-26644

|Turn Over

2. Attempt any two parts of the following :

$(10 \times 2 = 20)$

- (a) What do you mean by complexity classes ? Discuss the relationship among the complexity classes.
- (b) Show that if there is a reduction from P_1 to P_2 then :
 - (i) If P_1 is undecidable then so is P_2 .
 - (ii) If P_1 is non-recursive enumerable then so is P_2 .
- (c) State and prove Rice theorem.
- Attempt any two parts of the following : 3.

$(10 \times 2 = 20)$

- (a) Explain the general steps in establishing NP-completeness proof of a given problem.
- (b) Explain the Gödel's incompleteness theorem with the help of examples.
- (c) Write the randomized version of Quick sort algorithm.
- Attempt any two parts of the following : $(10 \times 2 = 20)$ 4.
 - (a) State the circuit satisfiability problem. Prove the circuit satisfiability problem belongs to the class NP.
 - (b) Consider the problem of multiplication of an $n \times n$ matrix $A = (a_{ij})$ by an n-vector $x = (x_i)$. The resulting n-vector $y = (y_i)$ is given by the equation :

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
; for $i = 1, 2, ..., n$.

Write an algorithm to perform matrix-vector multiplication by computing all the entries of y in parallel.

(c) Write short note on Interactive proofs.

ECS072/KIH-26644

2

5. Attempt any two parts of the following : $(10 \times 2 = 20)$

- (a) Explain the completeness and soundness properties of probabilistically checkable proof system.
- (b) Explain the following class of problems :
 - BPP (i)
 - (ii) RP
 - (iii) CORP
 - (iv) ZPP.
- (c) Write short note on Quantum computing.

ECS072/KIH-26644

3

24625