(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 2754 Roll No. \square

B. Tech.

(SEM. VII) THEORY EXAMINATION 2011-12
THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time : 3 Hours
Total Marks : 100
Note :- (1) Attempt all questions.
(2) All questions carry equal marks.
(3) Notations/Symbols/Abbreviations used have usual meaning.
(4) Make suitable assumptions, wherever required.

1. Attempt any two parts of the following:
(a) Define Nondeterministic finite automata (NFA). Design deterministic finite automata (DFA) over $\Sigma=\{a, b\}$ with minimum number of states which accepts all the strings that contains babb as substring.
(b) Construct a minimum state automata equivalent to a DFA whose transitions are given as follows :

Present	Next State	
	Input a	Input b
$\rightarrow q_{0}$	q_{1}	q_{2}
q_{1}	q_{4}	q_{3}
q_{2}	q_{4}	q_{3}
q_{3}	q_{5}	q_{6}
q_{4}	q_{7}	q_{6}
q_{5}	q_{3}	q_{6}
q_{6}	q_{6}	q_{6}
q_{7}	q_{4}	q_{6}

Given that q_{3} and q_{4} are final states.
(c) State and prove Myhill-Nerode Theorem.
2. Attempt any two parts of the following :
(a) State the pumping lemma for regular expressions. Use the pumping lemma to prove that the language L is not regular.
\mathbf{L} is defined as follows.
$\mathrm{L}=\left\{0^{2 \mathrm{n}} 1^{3 \mathrm{n}} \mid \mathrm{n}\right.$ is nonnegative integers $\}$
(b) Obtain the regular expression for the following finite automata having \mathbf{q}_{3} as final state :

Present State	Next State	
	Input a	Input b
$\rightarrow \mathrm{q}_{0}$	q_{2}	q_{1}
q_{1}	q_{2}	q_{3}
q_{2}	q_{3}	q_{1}
q_{3}	q_{3}	q_{3}

(c) (i) Define Moore machine and Mealy machine. Illustrate the procedure to transform a given Moore machine to equivalent Mealy machine.
(ii) Prove that regular languages are closed under Intersection operation.
(iii) Find the regular expression for the set of all strings of 0 's and 1 's in which every three are at least two occurrences of $\mathbf{0}$ between any two occurrence of 1 .
3. Attempt any two parts of the following :
(a) Simplify the following context free grammar \mathbf{G} to an equivalent context free grammar that do not have any useless symbol, null production or unit production :
$\mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{aBB}$
$\mathrm{A} \rightarrow \mathrm{aaA} \mid \in$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{bbC}$
$\mathrm{C} \rightarrow \mathrm{B}$
\mathbf{S} is the start symbol.
(b) What do you understand by ambiguous grammar? Show that the following grammar is ambiguous:

$$
\mathbf{S} \rightarrow \mathbf{S}+\mathbf{S}|\mathbf{S} * \mathbf{S}|(\mathbf{S}) \mid \mathbf{a}
$$

Write an equivalent unambiguous context free grammar which generates the same language.
(c) Convert the following grammar into Greibach Normal Form (GNF) :

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{A A} \mid \mathbf{0} \\
& \mathbf{A} \rightarrow \mathbf{S S} \mid \mathbf{1}
\end{aligned}
$$

4. Attempt any two parts of the following :
(a) What do you understand by Instantaneous Description of a Push Down Automata (PDA) ? Construct a deterministic PDA which accepts all those strings over $\{\mathbf{a}, \mathbf{b}\}$ which have equal number of a's and \mathbf{b} 's.
(b) Prove that context free languages are closed under union and star-closure.
(c) Consider the PDA $\mathbf{M}=\left(\left\{\mathbf{q}_{0}, \mathbf{q}_{1}\right\},\{\mathbf{a}, \mathbf{b}\},\left\{\mathbf{A}, \mathbf{Z}_{0}\right\}, \delta, \mathbf{q}_{0}\right.$, $Z_{0},\left\{q_{1}\right\}$) where δ is given as follows:
$\delta\left(\mathbf{q}_{0}, \mathbf{a}, \mathbf{Z}_{0}\right)=\left\{\left(\mathbf{q}_{0}, \mathbf{A Z} \mathbf{Z}_{0}\right)\right\}$
$\delta\left(\mathbf{q}_{0}, \mathbf{b}, \mathbf{A}\right)=\left\{\left(\mathbf{q}_{0} . \mathbf{A A}\right)\right\}$
$\delta\left(\mathbf{q}_{0}, \mathbf{a}, \mathbf{A}\right)=\left\{\left(\mathbf{q}_{1}, \boldsymbol{\epsilon}\right)\right\}$
Obtain the context free grammar that generates the same language which is accepted by PDA \mathbf{M}.
5. Attempt any two parts of the following :
(a) Define Turing machine. Design a Turing machine that accepts the language \mathbb{L} over $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ defined as follows:

$$
\mathbb{L}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n} \mid \mathbf{n} \text { is positive integer }\right\} .
$$

(b) Differentiate between recursive language and recursively enumerable language. Prove that if a language \mathbf{L} and complement of \mathbf{L} both are recursively enumerable then \mathbf{L} is recursive.
(c) Write short note on Universal Turing Machine.

