Printed Pag	es—4		EIT072
(Following Pa	aper ID and Roll No	b. to be filled	in your Answer Book)
PAPER ID	: 2754 Roll No.		
	B. '	Tech.	
(SEM	1. VII) THEORY B	EXAMINAT	ION 2011-12
	THEORY OF A	UTOMAT	A AND
	FORMAL I	LANGUAG	ES
Time : 3 Hou	Irs		Total Marks : 100
Note :- (1)	Attempt all quest	tions.	
(2)	All questions car	ry equal mark	<s.< td=""></s.<>
(3)	Notations/Symbo	ols/Abbreviat	ions used have usual
	meaning.		
(4)	Make suitable as	sumptions, w	herever required.
1. Attempt	any two parts of th	ne following :	
(a) De	fine Nondetermini	stic finite aut	tomata (NFA). Design
det	erministic finite au	itomata (DFA	a) over $\Sigma = \{a, b\}$ with
mi	nimum number of	states which	accepts all the strings
tha	t contains babb as	substring.	
(b) Co	nstruct a minimum	state automa	ta equivalent to a DFA
wh	ose transitions are	given as follo	ows :

1

EIT072/KIH-26394

[Turn Over

Present	Next State	
State	Input	Input
and another	a	b
$\rightarrow q_0$	q ₁	q ₂
q ₁	q ₄	q ₃
q ₂	q ₄	q ₃
q ₃	q ₅	q ₆
q ₄	q ₇	q ₆
q ₅	q ₃	q ₆
q ₆	q ₆	q ₆
q ₇	q ₄	q ₆

Given that q_3 and q_4 are final states.

(c) State and prove Myhill-Nerode Theorem.

2. Attempt any two parts of the following :

(a) State the pumping lemma for regular expressions. Use the pumping lemma to prove that the language L is not regular. L is defined as follows.

 $L = \{0^{2n}1^{3n} | n \text{ is nonnegative integers}\}$

(b) Obtain the regular expression for the following finite automata having q₃ as final state :

Present	Next State		
State	Input	Input	
to Review	a	b	
$\rightarrow q_0$	q ₂	q ₁	
\mathbf{q}_1	q ₂	q ₃	
q ₂	q ₃	q ₁	
q ₃	q ₃	q ₃	

EIT072/KIH-26394

2

- (c) (i) Define Moore machine and Mealy machine. Illustrate the procedure to transform a given Moore machine to equivalent Mealy machine.
 - Prove that regular languages are closed under Intersection operation.
 - (iii) Find the regular expression for the set of all strings of0's and 1's in which every three are at least two occurrences of 0 between any two occurrence of 1.
- 3. Attempt any two parts of the following :
 - (a) Simplify the following context free grammar G to an equivalent context free grammar that do not have any useless symbol, null production or unit production :
 - $S \rightarrow aA \mid aBB$

$$A \rightarrow aaA \in$$

 $B \rightarrow bB \mid bbC$

 $C \rightarrow B$

S is the start symbol.

(b) What do you understand by ambiguous grammar ? Show that the following grammar is ambiguous :

 $S \rightarrow S + S | S * S | (S) | a$

Write an equivalent unambiguous context free grammar which generates the same language.

(c) Convert the following grammar into Greibach Normal Form (GNF):

3

 $S \rightarrow AA \mid 0$ $A \rightarrow SS \mid 1$

EIT072/KIH-26394

[Turn Over

- 4. Attempt any two parts of the following :
 - (a) What do you understand by Instantaneous Description of a Push Down Automata (PDA)? Construct a deterministic PDA which accepts all those strings over {a, b} which have equal number of a's and b's.
 - (b) Prove that context free languages are closed under union and star-closure.
 - (c) Consider the PDA $\mathbf{M} = (\{\mathbf{q}_0, \mathbf{q}_1\}, \{\mathbf{a}, \mathbf{b}\}, \{\mathbf{A}, \mathbf{Z}_0\}, \delta, \mathbf{q}_0, \mathbf{Z}_0, \{\mathbf{q}_1\})$ where δ is given as follows :

 $\delta (q_0, a, Z_0) = \{(q_0, AZ_0)\}$

 δ (q₀, b, A) = {(q₀. AA)}

 $\delta (\mathbf{q}_0, \mathbf{a}, \mathbf{A}) = \{(\mathbf{q}_1, \epsilon)\}$

Obtain the context free grammar that generates the same language which is accepted by PDA M.

- 5. Attempt any two parts of the following :
 - (a) Define Turing machine. Design a Turing machine that accepts the language L over {a, b, c} defined as follows :

 $L = \{a^n b^n c^n \mid n \text{ is positive integer}\}.$

(b) Differentiate between recursive language and recursively enumerable language. Prove that if a language L and complement of L both are recursively enumerable then L is recursive.

4

(c) Write short note on Universal Turing Machine.

EIT072/KIH-26394

10600