(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 2883 Roll No.						188					
- 10 M						- 100 alon					

and the will make make a man B. Tech. At horse with more all the

(SEM. VII) THEORY EXAMINATION 2011-12

DIGITAL IMAGE PROCESSING

Time: 3 Hours Total Marks: 100

Note: Attempt all the questions. All questions carry equal marks.

- Attempt any four of the following: 1. $(5 \times 4 = 20)$
 - (a) What are the components of an image processing workstation?
 - (b) Define connectivity. What is the difference between 8-connectivity and m-connectivity?
- (c) What would be the effect of repeated application of histogram equalization to an image? Is this repeated operation helpful in any way?
 - Define resolution. What is meant by sampling and (d) quantization?
 - How many gray levels will a half toned image have? (e) Explain.
- Attempt any two of the following: $(10 \times 2 = 20)$ 2.

rever the Hadnerd conserve works find the following

(a) Explain the concept of aliasing for two dimensional signals. How does one avoid aliasing?

- (b) Compare and contrast average filtering and median filtering.
- (c) Explain the power law transformation.
- Attempt any two of the following:

 $(10 \times 2 = 20)$

- (a) Explain in detail the stages of edge detection algorithms. How are they present in edge operators?
- Code the following message using arithmetic coding algorithm:

SWISS

Partification and the question of say (c) Perform image enhancement for the 8 × 8 image distribution shown in the following table:

	r	0	1	2	3	4	5	6	7
Heavite	p_k	8	10	10	2	12	16	4	2

4. Attempt any two of the following: $(10 \times 2 = 20)$

Check of the service

(a) Perform histogram equalization on the following image:

Victoria como de basa di magenera e 8

but smilgment
$$\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$$
 at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take the context map $\begin{pmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{pmatrix}$ at take

(b) Prove that Hadmard transform works for the following image: Red World Did to awt was not call.

$$\mathbf{F} = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$$

(c) How to convert a colour image to a gray scale image and vice versa? What is the need for gamma correction? Convert following RGB triplet to CMY and YIQ:

 $(1 \ 0 \ 1)$

- 5. Explain any four of the following: $(5\times4=20)$
 - (a) Difference between image enhancement and image restoration.
 - (b) Inverse filtering.
 - (c) Predictive coding.
 - (d) Effect of size and shape of the mark on the filtering process.

Abstract street class. What is a contract by an about any sec-

(e) Significance of image entropy.

PART TO STATE OF THE STATE OF