(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 2691 Roll No.

B.Tech.

(SEM. VII) ODD SEMESTER THEORY
EXAMINATION 2012-13

OPEN CHANNEL FLOW

Time : 3 Hours
Total Marks : 100
Note :-Attempt all questions. Assume any data suitably if required.

1. Attempt any four of the following questions: $\quad(\mathbf{5} \times \mathbf{4}=\mathbf{2 0})$
(a) Prove that "For a given specific energy the discharge is maximum at the critical flow".
(b) Show that at critical flow $E_{C}=\frac{3}{2} y_{c}$, where E_{C} is critical specific energy and y_{c} is specific depth.
(c) Show that triangular channel section is most efficient when its central angle is 90°.
(d) For a rectangular channel, show that Q is maximum at the critical depth when specific force P is constant.
(e) How will you calculate total discharge in a compound channel ? Explain with example.
(f) Define: Section factor, Conveyance and differentiate between channel of first kind and channel of second kind.
2. Attempt any two of the following questions: $\quad(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$
(a) Using the Manning equation obtain the condition for velocity to remain constant for various normal depths for a channel with constant S and n .
(b) Show that the gradually flow equation is reduced to uniform flow formula if $\mathrm{dy} / \mathrm{dx}=0$.
(c) Show that the water surface slope S_{w} of a gradually varied flow is equal to the sum of energy slope S and the slope due to velocity change $\frac{\mathrm{d}}{\mathrm{dx}}\left(\alpha \frac{\mathrm{V}^{2}}{2 \mathrm{~g}}\right)$.
3. Attempt any two of the following questions: $\quad(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$
(a) A wide rectangular channel carrying $5.0 \mathrm{~m}^{3} / \mathrm{s}$ has a bottom slope 0.00266 and Manning's n of 0.015 . If the channel is followed by a sudden drop, determine how far upstream from the drop depth of flow will be 2.40 m . Use direct step method.
(b) A spillway, as shown in figure 1 , has a flow of $3 \mathrm{~m}^{3} / \mathrm{s}$ per meter of width occurring over it. What depth y_{2} will exist downstream of the hydraulic jump ? Assume there is no energy loss over the spillway.

Figure 1
(c) Estimate the energy head loss through the jump.
4. Attempt any two of the following questions: $\quad(2 \times 10=\mathbf{2 0})$
(a) A steady flow occurs in a rectangular channel at a depth of 1.5 m and velocity of $2.0 \mathrm{~m} / \mathrm{s}$. The side of channel are 3.0 high and the channel is 1000 m long. The flow is suddenly stopped at the downstream end by means of a gate. Due to surge produced, will the water spill over the sides? How much time will be required for the surge to reach the upstream of the channel?
(b) What is surge in open channel ? Prove celerity of wave ' c ' is given by $\mathrm{C} \approx \sqrt{\mathrm{gy}_{1}}$, where all symbols have usual meanings.
(c) Discuss the rapid varied flow induced by sudden transition in flow through a non prismatic channel.
5. Attempt any two of the following questions: $(2 \times 10=20)$
(a) What do you understand by bottom racks and classify it into different categories? Discuss various types of flow that can occur over bottom racks and draw its profile also.
(b) A discharge of $11 \mathrm{~m}^{3} / \mathrm{s}$ is diverted through ports in the bottom of the channel between sections 1 and 2 as shown in fig 2. Neglecting head losses and assuming a horizontal channel, what depth of water is to be expected
at section 2 ? What channel width at section 2 would be required to produce a depth of 2.5 m ?

Figure 2
(c) A rectangular concrete conduit is to be used as a culvert on a slope of 0.02 . The culvert is 15 m long and has a cross-section of $2.13 \mathrm{~m} \times 2.13 \mathrm{~m}$. If the tail water elevation is 1.8 m above the crown at the outlet, determine the head water elevation necessary to pass a $10 \mathrm{~m}_{3} / \mathrm{s}$ discharge. Assume a square-edged entrance $\left(K_{e}=0.5\right)$.

