(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 2786 Roll No. \square

B.Tech.

(SEM. VII) ODD SEMESTER THEORY EXAMINATION 2012-13

OPERATIONS RESEARCH

Time : 3 Hours
Total Marks : 100
Note : (1) Attempt all the questions.
(2) They carry equal marks.

1. Attempt any two parts of the following questions :
(a) Verify that the following linear programming problem has an unbounded optimal solution :
(i) graphically
(ii) Using the Simplex method:

Maximize $11 \mathrm{x}_{1}+7 \mathrm{x}_{2}$
subject to

$$
\begin{aligned}
5 x_{1}+2 x_{2} & \geq 20 \\
3 x_{1}-4 x_{2} & \leq 12 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b) Write the dual of the above problem.
(c) Consider the following linear programming problem :

$$
\begin{aligned}
& \text { Maximize } 2 x_{1}+12 x_{2}+7 x_{3} \\
& \text { subject to } x_{1}+3 x_{2}+2 x_{3} \leq 10000 \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 4000 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{aligned}
$$

The optimal solution is shown below, where z is the objective function and x_{4} and x_{5} are slack variables :

z	1	12	2	0	0	7	28000
X_{4}	0	-3	-1	0	1	-2	2000
X_{5}	0	2	2	1	0	1	4000

(i) Suppose that the right-hand-side of the second constraint is changed to $4000+\Delta$. What is the range of Δ that will keep the basis of the foregoing tableau optimal?
(ii) Find explicitly the optimal value z as a function of Δ for part (i).
2. Answer any two of the following :
(a) What will be the effect of subtracting ' a_{i} ' from each column and a constant ' b_{i} ' from each row of an assignment matrix $\left\{\mathrm{C}_{\mathrm{ij}}\right\}$. Prove the same mathematically.
(b) Construct a basic feasible solution by the North-West corner method and then find the optimal solution for the following transportation problem :

Destinations

Sources
Requirement

1	2	3	Supply
3	5	-2	3
2	3	4	2
1	2	2	

(c) Solve the following assignment problem as a transportation problem :

3. Answer any two of the following :
(a) Find the maximal flow from node 1 to node 7 in the following network :

(b) In the above network, find out the shortest distance from
(1) to (7)
(c) What is the use of minimal cut typically in Network Flows

Problem ? Explain with the help of an example.

OR

Discuss CPM and various floats.
4. Answer any two parts of the following :
(a) Develop the expression for EOQ and the corresponding optimal cost.
(b) What role maintenance have on machine's useful life ? What role do you see of maintenance cost, machine cost, etc. in deciding the life of an equipment and thus its replacement?
(c) A furniture manufacturer makes 25 chairs of a certain model daily requiring 100 legs per day. A machine can produce 200 legs per day. Each setup costs Rs. 4,000. Annual holding cost per leg is Rs. 16.00 . The manufacturer runs his business for 250 days in a year. Determine as to how many legs be produced in each production lot for an objective of minimizing total of holding and setup cost. For how many working days, a production run will go ?
5. Answer any two of the following :
(a) The tuition fee payment window at the registrar's office is staffed by one clerk. Service times are exponentially distributed with an average of 6 minutes. Students arrive at the counter at the mean rate of 8 per hour and their number follows Poisson distribution. Determine :
(i) mean waiting time
(ii) average number of students waiting and
(iii) Clerk's idle period fraction.
(b) Can we view inventory system as a queueing system ? Explain with the help of an example problem.
(c) Explain the concept of saddle point with reference to a rectangular problem. Discuss the graphical methodology for solving $\mathrm{n} \times 2$ rectangular game problem.

