Printed Pages-4

EOE073

(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 2786 Roll No.

B.Tech.

(SEM. VII) ODD SEMESTER THEORY EXAMINATION 2012-13 OPERATIONS RESEARCH

Time : 3 Hours

Total Marks : 100

Note: (1) Attempt all the questions.

(2) They carry equal marks.

1. Attempt any two parts of the following questions :

- (a) Verify that the following linear programming problem has an unbounded optimal solution :
 - (i) graphically
 - (ii) Using the Simplex method :

Maximize $11x_1 + 7x_2$ subject to

$$5x_1 + 2x_2 \ge 20$$

$$3x_1 - 4x_2 \le 12$$

$$x \cdot x \ge 0.$$

(b) Write the dual of the above problem.

(c) Consider the following linear programming problem :

Maximize $2x_1 + 12x_2 + 7x_3$ subject to $x_1 + 3x_2 + 2x_3 \le 10000$ $2x_1 + 2x_2 + x_3 \le 4000$ $x_1, x_2, x_3 \ge 0.$

EOE073/DLT-44290

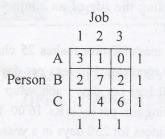
[Turn Over

The optimal solution is shown below, where z is the objective function and x_4 and x_5 are slack variables :

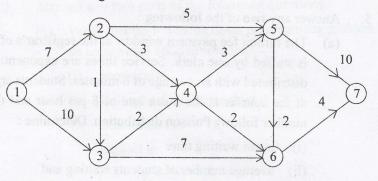
	Z	x ₁	x ₂	X3	x4	X5	RHS
Z	1	12	2	0	0	7	28000
x ₄	0	-3	-1	0	1	-2	2000
X5	0	2	2	1	0	1	4000

- (i) Suppose that the right-hand-side of the second constraint is changed to 4000 + Δ. What is the range of Δ that will keep the basis of the foregoing tableau optimal ?
- (ii) Find explicitly the optimal value z as a function of ∆ for part (i).
- 2. Answer any two of the following :
 - (a) What will be the effect of subtracting ' a_i ' from each column and a constant ' b_i ' from each row of an assignment matrix { C_{ij} }. Prove the same mathematically.
 - (b) Construct a basic feasible solution by the North-West corner method and then find the optimal solution for the following transportation problem :

Destinations


		1.0	2	3	Supply	
1001 2.2	A	3	5	-2	3	
Sources	В	2	3	4	2	
Req	uirement	1	2	2		

EOE073/DLT-44290


2

(c) Solve the following assignment problem as a

transportation problem :

- 3. Answer any two of the following :
 - (a) Find the maximal flow from node 1 to node 7 in the following network :

- (b) In the above network, find out the shortest distance from (1) to (7)
- (c) What is the use of minimal cut typically in Network Flows Problem ? Explain with the help of an example.

OR

Discuss CPM and various floats.

- 4. Answer any two parts of the following :
 - (a) Develop the expression for EOQ and the corresponding optimal cost.

3

EOE073/DLT-44290

90

[Turn Over

- (b) What role maintenance have on machine's useful life ? What role do you see of maintenance cost, machine cost, etc. in deciding the life of an equipment and thus its replacement ?
- (c) A furniture manufacturer makes 25 chairs of a certain model daily requiring 100 legs per day. A machine can produce 200 legs per day. Each setup costs Rs. 4,000. Annual holding cost per leg is Rs. 16.00. The manufacturer runs his business for 250 days in a year. Determine as to how many legs be produced in each production lot for an objective of minimizing total of holding and setup cost. For how many working days, a production run will go?
- 5. Answer any two of the following :
 - (a) The tuition fee payment window at the registrar's office is staffed by one clerk. Service times are exponentially distributed with an average of 6 minutes. Students arrive at the counter at the mean rate of 8 per hour and their number follows Poisson distribution. Determine :
 - (i) mean waiting time
 - (ii) average number of students waiting and
 - (iii) Clerk's idle period fraction.
 - (b) Can we view inventory system as a queueing system ? Explain with the help of an example problem.
 - (c) Explain the concept of saddle point with reference to a rectangular problem. Discuss the graphical methodology for solving n×2 rectangular game problem.

EOE073/DLT-44290

54950