(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 2754

Roll No.

B.Tech.

(SEM. VII) ODD SEMESTER THEORY EXAMINATION 2012-13

THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours

Total Marks: 100

-- ...

Note: (i) Attempt all questions.

- (ii) All questions carry equal marks.
- (iii) Notations/Symbols/Abbreviations used have usual meaning.
- 1. Attempt any **two** parts of the following:
- (a) Construct a minimum state automata equivalent to a FA whose transitions are given as follows:

Present	Next State	
State	Input	Input
	a	b
$\rightarrow q_0$	q ₁	q_2
q_1	q_3	q ₈
q_2	q ₄	q_3
q_3	q_5	q_3
q_4	q_4	q_6
q_5	q ₈	q_6
q_6	q ₇	q_4
q ₇	q_6	q ₅
q ₈	q ₈	q ₇

Given that q_4 , q_5 and q_8 are final states.

EIT072/DLT-44138

1 1

[Turn Ove

- (b) Design finite automata (DFA) over $\Sigma = \{0, 1\}$ with minimum number of states which accepts all the strings that end with 11 and contain 101 as substring.
- (c) (i) Discuss the Chomsky hierarchy of the languages.
 - (ii) Write the regular expression for the language of all strings of 0's and 1's in which do not contain substring 000.
- 2. Attempt any two parts of the following:
 - (a) (i) Let r_1 and r_2 be regular. Simplify the following regular expression:

$$r_1(r_1^*, r_1 + r_1^*) + r_1^* + (r_1 + r_2 + r_1, r_2 + r_2, r_1)^*$$

- (ii) Prove that every language defined by a regular expression is also accepted by some finite automata.
- (b) Obtain the regular expression for the following finite automata having \mathbf{q}_0 as final state :

Present	Next State	
State	Input	Input
	a	b
$\rightarrow q_0$	q_3	q_1
q_1	q ₂	q_0
q ₂	q ₁	q_3
q_3	q_0	q ₂
9 ₄	q_5	q ₄
q_5	q ₄	q_3

- (c) (i) If L and M are regular languages then L-M is also regular language. Prove.
 - (ii) State the pumping lemma for regular expressions. Use the pumping lemma to prove that the language L is not regular. L is defined as follows:

 $L = \{(01)^n \mid n \text{ is prime number}\}.$

- 3. Attempt any two parts of the following:
 - (a) (i) The set of context free languages is closed under intersection operation. Prove the statement or give counter example.
 - (ii) Determine whether following grammar is ambiguous or not?

 $S \rightarrow ictS \mid ictSeS \mid a$.

(b) Simplify the following context free grammar G to an equivalent context free grammar that do not have any useless symbol, null production or unit production:

 $S \rightarrow A \mid B \mid C$

 $A \rightarrow aAa \mid B$

 $B \rightarrow bB \mid bb$

C → aCaa | D

 $D \rightarrow baD \mid abD \mid aa$

S is the start symbol.

- (c) (i) Give an algorithm to decide whether language generated by a given CFG is finite.
 - (ii) Convert the following grammar into Greibach Normal Form (GNF).

 $S \rightarrow ABb \mid a$

 $A \rightarrow aaA$

 $B \rightarrow bAb$

- 4. Attempt any two parts of the following:
 - (a) What is a Push Down Automata (PDA)? Construct a PDA which accepts the language L given by $L = \{0^n \ 1^{2n} \mid n \text{ is non-negative integer}\}.$

[Turn Over

- (b) (i) Prove that if a PDA M₁ accepts language L by final state then there exist a PDA M₂ which accepts L by empty stack.
 - (ii) Construct a Push Down Automata which accepts the language generated by the following context free grammar having S as start symbol:

$$S \rightarrow aSA \mid a$$

$$A \rightarrow bB$$

 $B \rightarrow b$

(c) Obtain a context free grammar that generates the language accepted by the PDA M with following transitions:

$$\delta(q_0, 1, Z_0) = \{(q_0, XZ_0)\}$$

$$\delta(q_0, 1, X) = \{(q_0, XX)\}\$$

$$\delta(q_0, 0, X) = \{(q_0, X)\}$$

$$\delta(q_0, \in, X) = \{(q_1, \in)\}$$

$$\delta(q_1, \in, X) = \{(q_1, \in)\}$$

$$\delta(q_1, 0, X) = \{(q_1, XX)\}$$

$$\delta(q_1, 0, Z_0) = \{(q_1, Z_0)\}$$

Given that q_0 is start state and q_1 is final state.

- 5. Attempt any two parts of the following:
 - (a) Define Turing machine. Design a Turing machine that accepts the language L over {a, b} defined as follows:

$$L = \{ww \mid w \in (a + b)^*\}.$$

- (b) (i) Prove that recursively enumerable languages are closed under intersection operation.
 - (ii) What do you understand by undecidable problem? Prove that Halting problem of Turing machine is undecidable.
- (c) (i) State post correspondence problem (PCP). Write the steps to construct a PCP instance, given an instance of Modified Post Correspondence Problem (MPCP).
 - (ii) Write short notes on various variants of Turing Machine.