Printed Pages-4

EEC703

(Following Paper ID a	and Roll No	. to	be fi	lled i	n you	ır An	swer	Book)
PAPER ID : 2728	Roll No.		Π				Ι	

B.Tech.

(SEM. VII) ODD SEMESTER THEORY EXAMINATION 2012-13

VLSI DESIGN

Time : 3 Hours

Total Marks : 100

Note :- Attempt all the questions. All questions carry equal marks.

- 1. Attempt any **four** parts : (5×4=20)
 - (a) Draw the Y chart and explain the VLSI design process.
 - (b) Enlist the classification of CMOS digital logic families. Why CMOS VLSI design is better techniques than its counter parts ?
 - (c) Explain the concept of regularity, modularity, semi custom and full custom styles of VLSI system design.
 - (d) What are the various processes of CMOS fabrication ? Illustrate the main steps in a typical n-well process.
 - (e) Explain the scaling down of MOS-Transistor using Constant Field Scaling and its limitation.
 - (f) Explain symbol, different colours and lines used for drawing stick diagram. Draw a stick diagram of CMOS inverter.

-

EEC703/DLT-44605

[Turn Over

2. Attempt any two parts :

(a) Measured voltage and current data for a MOSFET are given below :

V _{GS} (V)	V _{DS} (V)	V _{SB} (V)	$I_{D}(\mu A)$
3	3	0	97
4	4	0	235
5	5	0	433
3	3	3	59
4	4	3	173
5	5	3	347

Determine the type of the device and calculate the parameters $k_n V_{T0}$ and γ . Assume $\phi_F = -0.3$ V.

- (b) Consider a CMOS inverter circuits with the following parameters $V_{DD} = 3.3$ V, $V_{Ton} = 0.6$ V, $V_{Top} = -0.7$ V, $\mu_n C_{ox} = 60 \ \mu A/V^2$, $(W/L)_n = 8$, $\mu_p C_{ox} = 20 \ \mu A/V^2$, $(W/L)_p = 12$. Calculate the noise margin of the circuits.
- (c) Consider a CMOS inverter, with the following device parameters, $V_{DD} = 5V$, $V_{Ton} = 0.8V$, $V_{Top} = -1.0V$, $\mu_n C_{ox} = 50 \,\mu A/V^2$, $\mu_p C_{ox} = 20 \,\mu A/V^2$, $\lambda = 0$. Both transistor have a channel length of $L_n = L_p = 1 \,\mu m$. The total output load capacitance of this circuit is $C_{out} = 2pF$, which is independent of transistor dimensions.
 - (i) Determine the channel width of the nMOS and the pMOS transistors such that the switching threshold voltage is equal to 2.2V and the output rise time $\tau_{nse} = 5ns$.
 - (ii) Calculate the average propagation delay time τ_{p} .

EEC703/DLT-44605

2

3. Attempt any two parts :

$(10 \times 2 = 20)$

- (a) Consider the logic circuit shown in Figure 1 with V_{TO} (enhancement) = 1V and V_{TO} (depletion) = -3 V and $\gamma = 0$.
 - (i) Determine the logic function F
 - (ii) Calculate WL/LL such that VOL does not exceed 0.4V. Explain the behaviour of Pass transistor in dynamic CMOS logic implementation.

- (b) Explain the behaviour of Pass transistor in dynamic CMOS logic implementation. With a neat schematic diagram, explain SR flip-flop implementation using pass transistor logic.
- (c) Design the circuit described by the Boolean function $Y = \overline{A \cdot (B + C)(D + E)}$ using CMOS logic. Calculate the equivalent CMOS inverter circuit for simultaneous

switching of all inputs assuming that $\left[\frac{W}{L}\right] = 5$ for pMOS

transistor and $\left\lfloor \frac{W}{L} \right\rfloor = 2$ for all nMOS transistor.

EEC703/DLT-44605

3

[Turn Over

4. Attempt any four parts :

(5×4=20)

- (a) Draw a 4×1 multiplexer using Transmission Gate (TG).
- (b) Enlist the classification of dynamic CMOS logic circuit and discuss the advantage of dynamic logic circuit over static CMOS logic circuit.
- (c) Discuss the charge sharing problem in VLSI circuits. Explain various circuit techniques used in domino CMOS circuits for solving charge sharing problem.
- (d) Draw a neat diagram of CMOS SRAM cell and explain it.
- (e) Explain leakage currents and refresh operation in DRAM cells.
- (f) Give a logic circuit example in which stuck-at-0 fault and stuck-at-1 fault are indistinguishable.
- 5. Attempt any four parts :

$(5 \times 4 = 20)$

- (a) Discuss the various design techniques involved in low power CMOS VLSI circuits.
- (b) Write a short note on Adiabatic logic circuit.
- (c) Explain the different kinds of Physical defect (faults) that can occur on a CMOS circuits.
- (d) Define the terms Controllability and Obervability.
- (e) Discuss in brief Ad-Hoc Testable design techniques.
- (f) Write a short note on Buit-in-self test (BIST) techniques.

4

15975