(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 2766 Roll No. | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

B.Tech.

(SEM. VII) ODD SEMESTER THEORY EXAMINATION 2012-13

COMPUTER AIDED DESIGN

Time : 3 Hours
Total Marks : 100
Note : (1) All questions are compulsory.
(2) Assume any missing data suitably.

1. Attempt any four parts :-
$(4 \times 5=20)$
(a) Discuss colour CRT monitors.
(b) Discuss Direct view storage tubes.
(c) Discuss Raster scan display.
(d) Discuss the concept of integrated CAD/CAM system.
(e) Discuss Flat panel display.
(f) Discuss windowing and clipping.
2. Attempt any four parts :$(4 \times 5=20)$
(a) Discuss mid point circle algorithm.
(b) Using Bresenham's line algorithms, find the pixel positions along the line path between end points $(15,8) \&$ $(28,16)$.
(c) Using scaling magnify the triangle with vertices $\mathrm{A}(0,0)$, $B(1,1)$ and $C(5,2)$ to thrice its size keeping $C(5,2)$ fixed.
(d) Discuss Homogeneous coordinate system.
(e) Discuss Shearing transformation.
(f) Discuss World Coordinate representation.
3. Answer any two parts :-
(a) Find the blending functions of Bezier curve for five control points. Plot the blending functions.
(b) Cubic spline curve is defined by the equation

$$
P(u)=C_{3} u^{3}+C_{2} u^{2}+C_{1} u+C_{0}
$$

Find four control points that define an identical Bezier curve.
(c) Discuss B-spline curves and its properties.
4. Answer any two parts :-
$(10 \times 2=20)$
(a) Find the values of a, b and c so that

$$
\begin{aligned}
& Y=a+b x+c x^{2} \text { is the best fit to the data } \\
& x=0,1,2,3,4 \\
& y=1,0,3,10,21
\end{aligned}
$$

Use least square method.
(b) From the following table of values of $x \& y$ obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d^{2}}$ for $x=1 \cdot 2$.

$$
\begin{aligned}
\mathrm{x}= & 1 \cdot 0,1 \cdot 2,1 \cdot 4,1 \cdot 6,1 \cdot 8,2 \cdot 0,2 \cdot 2 \\
\mathrm{y}= & 2 \cdot 7183,3 \cdot 3201,4 \cdot 0552,4 \cdot 9530,6 \cdot 0496,7 \cdot 3891 \\
& 9 \cdot 0250
\end{aligned}
$$

(c) For the axially loaded member shown in Fig. determine the nodal displacements and reaction at fixed end.
Given :

$$
\begin{aligned}
& \text { Area of Aluminium rod }=32 \times 10^{-4} \mathrm{~m}^{2} \\
& \text { Area of Brass rod }=12 \times 10^{-4} \mathrm{~m}^{2} \\
& \text { Modulus of Elasticity } \mathrm{E}_{\mathrm{Al}}=70 \mathrm{GPa}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Modulus of Elasticity } \mathrm{E}_{\text {Brass }}=100 \mathrm{GPa} \\
& \text { Axial load } \mathrm{P}_{2}=250 \mathrm{kN} \\
& \text { Axial load } \mathrm{P}_{3}=80 \mathrm{kN}
\end{aligned}
$$

Fig. 1
5. Write short notes on any four of the following :- $(\mathbf{4} \times \mathbf{5}=\mathbf{2 0})$
(a) Blobby objects.
(b) Super quadric surface.
(c) Constructive solid geometry.
(d) Solid modeling.
(e) Graphics functions.
(f) Shape function in FEM.

