(Following Paper ID and Roll No	to b	e fill	ed in	ı yo	ur A	ns	wer	Boo	ok)
PAPER ID: 2726 Roll No.		I	I						

B. Tech.

(SEM. VII) ODD SEMESTER THEORY EXAMINATION 2013-14

OPTICAL COMMUNICATION

Time: 3 Hours

Total Marks: 100

Note: - (i) Attempt ALL questions.

- (ii) All questions carry equal marks.
- 1. Attempt any four parts of the following: $(5\times4=20)$
 - (a) Draw the block diagram of optical fiber communication system. Enlist the advantages of optical communication.
 - (b) What do you mean by Acceptance Angle of an optical fiber? Derive an expression for numerical aperture of optical fiber.
 - (c) What is Total Internal Reflection? Explain Snell's law.
 - (d) Explain in brief the propagation characteristics of single and multimode fibers.
 - (e) Write a short note on fabrication process of optical fiber.

EEC701/DNG-51955

[Turn Over

1

- (f) What do you understand by Inter Symbol Interference (ISI)? A multimode graded index fiber exhibits total pulse broadening of 0.1 μs over a distance of 15 km. Estimate:
 - (i) The maximum possible bandwidth without ISI.
 - (ii) Pulse dispersion per unit length.
- 2. Attempt any four parts of the following: $(5\times4=20)$
 - (a) Discuss various dispersion mechanisms.
 - (b) Discuss the following terms for optical fiber:
 - (i) Absorption
 - (ii) Scattering losses.
 - (c) Write a short note on Dispersion Shifted Fiber (DSF).
 - (d) Enlist the polarization maintaining fibers. Two fibers having same polarization and operating at a wavelength of 0.8 μm have beat lengths of 0.5 mm and 75 m. Find the modal birefringence in each case.
 - (e) Differentiate between intramodal and intermodal dispersion for step and graded index fibers.
 - (f) Explain the working of a Heterodyne detection technique suitable for optical fiber communication.

EEC701/DNG-51955

2

- 3. Attempt any two parts of the following: (10×2=20)
 - (a) Explain the principle of semiconductor lasers and draw the emission characteristic. A ruby laser crystal is 4 cm long (n = 1.78). The peak emission wavelength is 0.55 μm. Determine the number of longitudinal modes and their frequency separation.
 - (b) Explain the physical principle of APD. What is the temperature effect on Avalanche Gain? Describe Automatic Gain Control using Op-Amp.
 - (c) With the help of a neat block diagram, explain the principle of working of Point to Point digital links.
- 4. Attempt any two parts of the following: (10×2=20)
 - (a) Write short notes on the following:
 - (i) WDM
 - (ii) p-i-n diode.
 - (b) Discuss the various factors which effect the launching of optical signal into fiber. Determine the power coupled into step index fiber whose n1 = 1.48, n2 = 1.46, if surface emitting LED radiates 150 μ W of power.
 - (c) Discuss Hetero-Junction in Light Emitting Diode (LED).Explain the efficiency and modulation capability of LED.

EEC701/DNG-51955

3

[Turn Over

- 5. Attempt any two parts of the following: $(10 \times 2 = 20)$
 - (a) Write a short note on Optical Power Budgeting. The following parameters are established for a long haul single-mode optical fiber operating at a wavelength of 1.3 μm :
 - Mean power launched from the laser transmitter-3dB.
 - Cable fiber loss 0.4 dB/km.
 - Splices fiber loss 0.1 dB/km.
 - Connection losses at the transmitter and receiver when operating at 35 M bit/sec (BER 10⁻⁹) 55 dbm.
 - Required safety margin 7 db.

Estimate the maximum possible link length without repeaters when operating at 35 M bit/sec. It may be assumed that there is no dispersion equalization penalty at this bit rate.

- (b) Draw a block diagram and explain the principle of Coherent detection method in optical fiber.
- (c) Write short notes on the following:
 - (i) Optical Power Meter.
 - (ii) Direct Intensity Modulation (DIM).