Printed Pages-7

(Following Paper ID and Roll No. to be filled in your Answer Book)										
PAPER ID : 2786	Roll No.			Τ						

B.Tech.

(SEM. VII) ODD SEMESTER THEORY

EXAMINATION 2013-14

OPERATIONS RESEARCH

Time : 3 Hours

Total Marks : 100

- Note :- (i) Attempt all questions.
 - (ii) All questions carry equal marks.
 - (iii) Be precise in your answer.
- 1. Answer any **four** of the following :
 - (a) Define Operations Research and discuss its scope in modern management.
 - (b) Discuss the methodology of Operations Research explaining briefly the main phases of an Operations Research study.
 - (c) Explain the characteristics of linear programming problem.

1

EOE073/DNG-51850

[Turn Over

(d) Solve the following problem with the help of Simplex Method :

Maximize $3x_1 + 4x_2$ subject to $1x_1 + 1x_2 \le 450$ $2x_1 + 1x_2 \le 600$ $x_1, x_2 \ge 0.$

 (e) Find the range of the coefficient of X (profit contribution) in the objective function for which the solution (quantity of two products) remains unaltered to the following problem :

Maximize 40X + 35Y

subject to $2X + 3Y \le 60$

 $4X + 3Y \le 96$

2

 $X, Y \ge 0.$

(f) Find the dual of the following problem :

Minimize 3a + 2.5bsubject to $2a + 4b \ge 40$ $4a + 2b \ge 50$ $a, b \ge 0$

EOE073/DNG-51850

- 2. Answer any two of the following :
 - (a) Show that the transportation problem is a special case of linear programming problem.
 - (b) The cost of transporting one unit from the sources to destinations, source capacity and destination requirements are given in the following table. Find the optimal schedule :

Source	De	stinatio	ons	Source capacity		
	D ₁	D ₂	D ₃	te myttor		
S ₁	27	23	30	80		
S ₂	10	40	45	50		
S ₃	20	55	30	70		
Requirements	35	60	55	e f. a then has		

(c) The table shown below is a profit matrix. Find the optimum

assignment schedule to maximize the profit :

1	2	3	4	5	
	2				and the second se
5	11	10	12	4	
2	4	6	3	5	1
3	12	5	15	6	1
6	15	4	11	7	-
7	9	8	12	5	1
	2 3 6	5 11 2 4 3 12 6 15	5 11 10 2 4 6 3 12 5 6 15 4	5 11 10 12 2 4 6 3 3 12 5 15 6 15 4 11	5 11 10 12 4 2 4 6 3 5 3 12 5 15 6 6 15 4 11 7

EOE073/DNG-51850

3

[Turn Over

- 3. Answer any two of the following :
 - (a) Explain the following:
 - Minimum spanning tree problem and the steps of solving such problems.
 - (ii) Fulkerson's rule for numbering the events of a network with suitable examples.
 - (b) A project has these activities, precedence relationships and activity duration in days.

Activity	Immediate	predec	essor activities	Duration
a		-01		10
b		-00		15
С		а		10
d		a		20
е		c		15
f		b		17
g		b		12
h		d, f		9
i		g, h		7

Construct a CPM Network for the project, and compute free float for each activity.

4

EOE073/DNG-51850

(c) Consider the network shown below. Node 1 is the starting node and node 7 is the terminal point. The distances d_{ij} between nodes i and j are given directly on each arc. Compute shortest distance and its designated route to node 7. Show the computational work at every step.

- 4. Answer any two of the following :
 - (a) Two players P and Q play a game where each of them has to choose one of the three colours white (W), black (B) and red (R) independently of the other. The complete pay-off matrix is shown below. Find the optimum strategy for P and Q and the value of the game.

Colour chosen by Q

		W	В	R	
	W	0	-2	7	
Colour chosen by P	В	2	5	6	
	R	3	-3	8	

EOE073/DNG-51850

5

[Turn Over

- (b) Arrival rate of telephone calls at a telephone booth is according to Poisson distribution with an average time of 9 minutes between two consecutive arrivals. The length of telephone call is assumed to be exponentially distributed with mean 3 minutes. Find :
 - (i) The probability that a person arriving at the booth will have to wait.
 - (ii) Find the average queue length that is formed from time to time.
 - (iii) Telephone Company will install a second booth when convinced that an arrival would expect to have to wait at least 4 minutes for the phone. Find the increase in flow of arrivals which will justify a second booth.
- (c) Explain the following:
 - Pure strategy, mixed strategy, and saddle point in a two person zero-sum game.
 - (ii) The important characteristics of queuing system.
- 5. Answer any two of the following :
 - (a) Show that the minimum total annual inventory cost for economic order quantity is √(2AHD).

Where A = ordering cost; Rs./order

H = inventory carrying cost per item per year

D = demand rate; units per year

6

State clearly the assumptions made.

EOE073/DNG-51850

(b) The initial price of an equipment is Rs. 5,000/-. The running cost varies as shown below :

 Year
 1
 2
 3
 4
 5
 6
 7

 Running cost (Rs.)
 400
 500
 700
 1000
 1300
 1700
 2100

 Find out the optimum replacement period, taking a discount rate of 0.9.
 2
 2
 3
 4
 5
 6
 7

- (c) Explain the following:
 - (i) Explain ABC analysis with procedural steps

7

(ii) Discuss quantity discount model.

EOE073/DNG-51850

16725