ECS-702

(Following Paper ID and R	oll No	o. to b	e filled	in you	ır Answ	er Boo	ok)
PAPER ID : 110702							
Roll No.							

B.Tech.

(SEM. VII) (ODD SEM.) THEORY EXAMINATION, 2014-15

DIGITAL IMAGE PROCESSING

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions.

1 Attempt any four parts of the following: (5×4=20)

a. What is Digital Image Processing? Discuss some of

its major applications.

b. Consider two image subsets $S_1 \& S_2$ as shown in the following figure. For $V=\{0\}$ determine whether the regions are: i) 4-Adjacent ii) 8-Adjacent iii) m-Adjacent. Give reasons for your answer.

S_1					5	2	
1	1	1	1	1	1	0	0
1	1	0	1	1	0	1	1
1	1	0	1	0	0	1	1
1	0	0	0	1	1	1	1

110702]

Mount

- c. Write short notes on :
 - i. Sampling and Quantization
 - ii. Homomorphic filtering.
- d. Given h(u, v) as follows, discuss its frequency response.

	1/6	
1/6	1/3	1/6
	1/6	

- e. Find the DFT of $f(x) = \{0, 1, 2, 1\}$.
- 2 Attempt any four parts of the following: (5×4=20)
 - a. What is Bit-plane Slicing? Given the following 3×3 image, find its bit planes.

100	1	2	3
	4	5	0
	7	2	1

- b. Write short notes on the following:
 - i. Gamma correction
 - ii. Piece-wise linear transformation.

c. Consider the following image. What will be the new value of the pixel (2, 2) if smoothing is done using a 3×3:

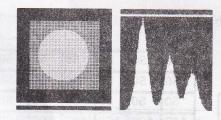
0	1	0	2	7
2	7	7	4	0
5	6	4	3	3
1	1	0	7	5
5	4	2	2	5

- i. Mean filter
- ii. Weighted average filter
- iii. Median filter
- iv. Min filter
- v. Max filter.
- d. Briefly explain the working of a Laplacian mask. What will be the effect of applying the filter (a) on the image (b) ?

			50	50	50	50	50	50
			50	50	50	50	50	50
1	1	1	50	50	50	50	50	50
1	-8	1	100	100	100	100	100	100
1	1	1	100	100	100	100	100	100
			100	100	100	100	100	100
	(a))	amoi.		(b)	-100	toor

110702]

3

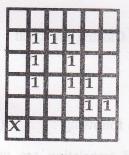

e. Perform histogram equalization on the following 8×8 image. The gray level distribution of the image is given below:

Gray levels (r _k)	0	1	2	3	4	5	6	7
Number of pixels (pk)	8	10	10	2	12	16	4	2

3 Attempt any four parts of the following:

 $(5 \times 4 = 20)$

a. In an image the gray scale spans from black to near white in only three increments. A certain noise has corrupted the image. The image and its histogram are as follows. What type of mean filters can you use to eliminate the noise? Explain.

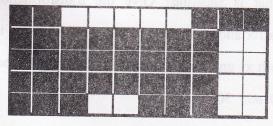


Give a model for image Degradation/Restoration
Process.

110702]

4

- c. What is the difference between image enhancement and image restoration? Mention some important causes of image degradation.
- d. Explain any two noise models in detail.
- e. What are order-statistic filters?
- 4 Attempt any four parts of the following: $(5\times4=20)$
 - a. Let A be an image and B a structuring element, given as follows. Find A⊕B and A⊖B. Note: X denotes the origin, which is not part of the structuring element.



1 X 1

A

B

b. Thin the following image. Show the image after each step.

110702]

5

c. Extract the connected component from the following image.

0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0
0	0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	1	0
	7	7	7		48	7		1
0	1	1	1	U	1	1	U	U

- d. Explain the procedure of Region Filling with an example.
- e. Prove that Opening and Closing are Dual Transformations.
- 5 Attempt any four parts of the following: (5×4=20)
 - a. Prove that rotation and translation are not commutative operations.
 - b. What is shearing? Give the transformation matrix and its inverse to carry out shearing in both x- and y-directions with shearing factors 10 and 30.

110702]

6

- c. Find a matrix to perform the following transformations to an object:
 - i. Scale in the x-direction using a scale factor 10.
 - ii. Followed by a rotation about z-axis 30 degree
- d. Explain the process of image segmentation using region growing.
- e. Describe the technique of thresholding for image segmentation.

110702]

7

12200