

(Following Paper ID and Rol	No.	to be	filled i	n your	Answer	Book)
PAPER ID: 131703						
Roll No.						

B. Tech.

(SEM. VII) (ODD SEM.) THEORY EXAMINATION, 2014-15

VLSI DESIGN [Total Marks: 100 Time: 3 Hours] Note: (1) Attempt all questions. (2) All questions carry equal marks. 5×4 Attempt any four parts of the following: Define VLSI design methodology (Y Chart) and MOS Scaling. Explain the CAD Tools for VLSI Design. (b) (c) Discuss the classification of CMOS digital logic families. Draw a 4×1 Multiplexer using Transmission (d) Gate (TG). (e) For an n channel MOS transistor with $\mu_n = 60 \text{ cm}^2 \, \mu A / V^{-s}, \quad C_{ox} = 7 \cdot 10^{-8} \, F / \text{cm}^2,$ $W=20 \,\mu m, \quad L=2 \,\mu m \quad \text{and} \quad V_{TO}=1.0 V$. Examine the relationship between the drain current and the terminal voltages. [Contd... 131703]

- (f) Explain the CMOS inverter switching characteristic and explain the definitions of delays and transition times.
- 2 Attempt any two parts of the following: 10×2
 - (a) Enlist the Layout design process and design rules of CMOS circuit. Draw a stick diagram of CMOS NOR gate.
 - (b) Consider a CMOS inverter circuits with the following parameters $V_{DD}=3.3 \,\mathrm{V}$, $V_{Ton}=0.6 \,\mathrm{V}$, $V_{Top}=-0.7 \,\mathrm{V}$, $k_n=200 \,\mathrm{\mu}A/V^2$, $k_p=80 \,\mathrm{\mu}A/V^2$, $k_R=2.5$ Calculate the noise margin of the circuits.
 - (c) Consider a CMOS inverter, with the following device parameters, $V_{DD} = 5V$, $V_{Ton} = 0.6V$, $V_{Top} = -0.7V$, $\mu_n C_{ox} = 60 \,\mu A/V^2$, $\mu_p C_{ox} = 20 \,\mu A/V^2$, $\lambda = 0$. Determine the $\left(\frac{W}{L}\right)$ ratios of the nMOS and the pMOS transistors such that the switching threshold is $V_{th} = 2.5V$.
- Attempt any four parts of the following: 5×4
 - (a) Discuss the Elmore Delay.
 - (b) Discuss the classification of Dynamic CMOS logic families.
 - (c) Discuss the operation of pass transistor in dynamic logic circuit.

131703]

2

[Contd...

- (d) In a logic Design logic function is $Z = \overline{(A+B+C+D) (E+F+G) (H+I)}$ implemented with domino CMOS circuits diagram with implements Z.
- (e) Discuss the overview of Power Consumption in CMOS logic circuits.
- (f) Design 2 input EXOR Logic Gate using CMOS Transmission Gate.
- 4 Attempt any two parts of the following: 10×2
 - (a) In a CMOS inverter power supply $V_{DD} = 5V$, determine the fall time, which is define as the time elapsed between the time point at which $V_{out} = V_{90\%} = 4.5V$ and the time point at which $V_{out} = V_{10\%} = 0.5$. The output load capacitance is 1pF. The nMOS transistor parameters are as follows: $V_{Tn} = 1.0V$,

$$\mu_n C_{ox} = 20 \mu A / V^2, \left(\frac{W}{L}\right)_n = 10$$

(b) Design the circuit described by the Boolean function $Y = \overline{A \cdot (B + C)(D + E)}$ using CMOS logic. Calculate the equivalent CMOS inverter circuit for simultaneous switching of all inputs assuming that $\left(\frac{W}{L}\right) = 10$ for pMOS transistor and $\left(\frac{W}{L}\right) = 5$ for all nMOS transistor.

131703]

3

[Contd...

- (c) Discuss the operation of single stage shift register circuits. Design a SR flip-flop using CMOS circuits.
- 5 Attempt any four parts of the following:
 - (a) Define the terms Controllability and Observability
 - (b) Explain the implementation of Built-In Self Test (BIST) design techniques for VLSI circuit testing.
 - (c) Design a D flip-flop using CMOS Transmission Gate circuits.
 - (d) Discuss the operation of CMOS SRAM cell circuit.
 - (e) Write short notes on Adiabatic CMOS logic.

 Design an adiabatic 2 input AND/NAND.
 - (f) Discuss the low power MTCMOS VLSI designs techniques.

13125

5×4