
(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 113751

Roll No. \square

B. Tech.

(SEM. VII) (ODD SEM.) THEORY EXAMINATION, 2014-15 DISCRETE STRUCTURES

Time : $\mathbf{3}$ Hours]
[Total Marks : 100
Note : Attempt All questions.
1 Attempt any four parts :
($4 \times 5=20$)
(i) Show that $\mathrm{n}^{3}+2 \mathrm{n}$ is divisible by 3 using mathematical induction?
(ii) Determine whether each of the following function are bijective or not :
a. $\quad F: R \rightarrow R ; f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$
b. $\quad F: R \rightarrow R ; f(x)=x^{5}+1$
(iii) Let R be a Relation from set A to B and S be a relation from set B to C, then show that $(\operatorname{RoS})^{-1}=\left(S^{-1} \mathrm{oR}^{-1}\right)$
(iv) Show that $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})\}$ is an equivalent relation on Z. Show also if $x_{1} \equiv y_{1}$ and $x_{2} \equiv y_{2}$ then $\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \equiv\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)$.
(v) Let $\mathrm{N}=\{1,2,3 \ldots\}$ and a relation is defined in $\mathrm{N} \times \mathrm{N}$ as follows: (a, b) is related to (c, d) iff $a d=b c$ then show that whether R is a equivalence relation.
(vi) Composition function is commutative. Prove the statement or give counter example.

2 Attempt any four parts:
$(4 \times 5=20)$
(i) If for each a and b in a group $G(a b)^{2}=a^{2} b^{2}$. Show that G is abelian.
(ii) Define cyclic group with an example.
(iii) Prove that $\left(\mathrm{Z}_{6},+_{6}\right)$ is an abelian group of order 6 . Where $Z_{6}=\{0,1,2,3,4,5\}$.
(iv) State and prove Lagrange's theorem.
(v) Consider $G=\{0,1,2,3,4,5,6,7,8,9\}$ under addition modulo 10. Find out order of each element of the group.
(vi) Explain Field with an example.

3 Attempt any two parts :
$(2 \times 10=20)$
(i) Simplify the Boolean expression
$\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,2,4,5,8,14,15)$, $d(w, x, y, z)=\sum m(7,10,13)$
(ii) Explain POSET and Lattice with an example.
(iii) Draw the Hasse Diagram for the following set under partial ordering: ($\{1,2,3,4,9,36\}, /$). Define Maximal, minimal, greatest and least element of POSET. Find these elements in the Hasse diagram. Is it a Lattice?

4 Attempt any two parts :
$(2 \times 10=20)$
(i) Check the validity of the following arguments using inference rules:
a. $(p \Lambda q)->r,(r \rightarrow q),(r \Lambda q) \rightarrow(q \Lambda r)$ $1-(p \Lambda q)->(q \Lambda r)$
b. $\sim \mathrm{p} \Lambda \mathrm{q}, \mathrm{r} \rightarrow \mathrm{p}, \sim \mathrm{r} \rightarrow \mathrm{s}, \mathrm{s} \rightarrow \mathrm{t} \mid-\mathrm{t}$
(ii) Prove the validity of the following argument using predicate calculus :
"Every living thing is a human being or an animal. Mohan is alive and he is not an animal. All human being have hearts. Hence, Mohan has a heart"
(iii) Show that $(\mathrm{P} \oplus \mathrm{Q}) \leftrightarrow((\mathrm{P} \Lambda \neg \mathrm{Q}) \mathrm{V}(\neg \mathrm{P} \Lambda \mathrm{Q}))$ is a tautology or contradiction or contingency?

5 Attempt any two parts :
(i) Solve the given recurrence relation :
$a_{n}-4 a_{n-1}+3 a_{n-2}=3 n^{2}-3 n+1$
(ii) Explain Extended Pigeonhole Principle. What is the minimum number of students required in a class to be sure that atleast 5 will receive the same grade if there are four possible grades ?
(iii) Write a short note on the following :
a. Planar graph
b. Euler graph
c. Graph coloring.

