

EIT-072

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 113752

Roll No.

B. Tech.

(SEM. VII) (ODD SEM.) THEORY EXAMINATION, 2014-15

THEORY OF AUTOMATA & FORMAL LANGUAGES

Time: 3 Hours]

[Total Marks: 100

Note:

- (1) Attempt all questions.
- (2) Assume suitable notations whereever necessary.
- 1 Attempt any two parts of the following:

2×10=20

(a) If $M = (\{P, Q, R, S\}, \{0, 1\}, \partial, P, \{Q.S\})$ and the transition table is given as:

States / input	0	1
-> P	Q,S	Q
Q +	R	R, S
R	S	P
S +		P

Construct a DFA equivalent to the given NFA.

113752]

1

Contd...

(b) Construct a Minimum state automation equivalent to the given DFA:

States / input	0	1
-> q ₀	q1	<i>q</i> 2
q1	<i>q</i> 4	<i>q</i> 3
q2	<i>q</i> 4	<i>q</i> 3
<i>q</i> 3 +	<i>q</i> 5	<i>q</i> 6
q4+	<i>q</i> 7	<i>q</i> 6
<i>q</i> 5	<i>q</i> 3	<i>q</i> 6
<i>q</i> 6	q6	<i>q</i> 6
<i>q</i> 7	q4	<i>q</i> 6

- (c) Construct a DFA accepting all the numbers over {0,1,.....,8,9} which are divisible by 3. Also verify your designed machine.
- Attempt any two parts of the following: $2 \times 10=20$
 - (a) (i) State and prove Arden's theorem.
 - (ii) Prove

$$(1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)*$$

- (b) Construct a DFA with reduced states equivalent to the R.E. 10+((0+11)0*1).
- (c) State and prove pumping lemma for regular set, also show that $L = \{a^p \mid p \text{ is a prime}\}$ is not regular.

- 3 Attempt any two parts of the following: $2\times10=20$
 - (a) Describe both the lemmas used to convert a Context Free Grammar into Greibach Normal Form.
 - (b) Convert the given CFG into Chomsky Normal Form (CNF):

$$S \rightarrow AB/aB$$

$$A \rightarrow aab/ \in$$

$$B \rightarrow bbA$$

(c) Find the reduced grammar equivalent to the grammar G whose productions are:

$$S \rightarrow AB/CA$$

$$B \to BC / AB$$

$$A \rightarrow a$$

$$C \rightarrow aB/b$$

- 4 Attempt any two parts of the following: 2×10=20
 - (a) Consider the language of all balanced strings involving two types of brackets: { } and []. Construct the PDA for the above language.
 - (b) Construct the PDA for:

$$\left\{WW^T/W\in\left(a+b\right)*\right\}.$$

(c) Consider the given

$$PDA: M = (\{q0\}, \{0,1\}, \{a,b,Z0\}, \delta, q0, Z0, \phi)$$

Where δ is defined as follows:

5 1 3 7 3

$$\begin{split} &\delta\left(q_{0},\,0,\,Z_{0}\right)=\left\{ \left(q_{0},\,aZ_{0}\right)\right\} \\ &\delta\left(q_{0},\,1,\,Z_{0}\right)=\left\{ \left(q_{0},\,bZ_{0}\right)\right\} \\ &\delta\left(q_{0},\,1,\,b\right)=\left\{ \left(q_{0},\,bb\right)\right\} \\ &\delta\left(q_{0},\,\epsilon,\,Z_{0}\right)=\left\{ \left(q_{0},\,\epsilon\right)\right\} \end{split}$$

Convert the given PDA M to corresponding CFG.

Attempt any two parts of the following: $2\times10=20$

- (a) Write post correspondence problem. Differentiate it with modified PCP. Does the PCP with two lists x=(1,10,1011) and y=(111,101,10101) have a solution. Explain.
- (b) What is recursive and recursive enumerable languages? Prove that L is recursive iff L and its complement L¹ are both Recursive Enumerable?
- (c) Design a Turing Machine for

$$L = \left\{ a^i b^i / i >= 1 \right\}.$$

113752]

4

4900