Printed Pages : 4

(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 113752

Roll No. \square

B. Tech.

(SEM. VII) (ODD SEM.) THEORY
EXAMINATION, 2014-15
THEORY OF AUTOMATA \& FORMAL LANGUAGES

Time : 3 Hours]
[Total Marks : 100
Note : (1) Attempt all questions.
(2) Assume suitable notations whereever necessary.

1 Attempt any two parts of the following : $2 \times 10=\mathbf{2 0}$
(a) If $M=(\{P, Q, R, S\},\{0,1\}, \partial, P,\{Q . S\})$
and the transition table is given as :

States / input	0	1
$->P$	Q, S	Q
$Q+$	R	R, S
R	S	P
$S+$	-	P

Construct a DFA equivalent to the given NFA.
(b) Construct a Minimum state automation equivalent to the given DFA :

States / input	0	1
$->q_{0}$	$q 1$	q^{2}
$q 1$	$q 4$	$q 3$
$q 2$	$q 4$	q^{3}
$q 3+$	$q 5$	$q 6$
$q 4+$	q^{7}	$q 6$
$q 5$	q^{3}	$q 6$
$q 6$	$q 6$	$q 6$
$q 7$	q^{4}	$q 6$

(c) Construct a DFA accepting all the numbers over $\{0,1, \ldots \ldots ., 8,9\}$ which are divisible by 3 . Also verify your designed machine.

2 Attempt any twe parts of the following: $2 \times 10=20$
(a) (i) State and prove Arden's theorem.
(ii) Prove
$(1+00 * 1)+(1+00 * 1)(0+10 * 1) *(0+10 * 1)=0 * 1(0+10 * 1) *$
(b) Construct a DFA with reduced states equivalent to the R.E. $10+\left((0+11) 0^{*} 1\right)$.
(c) State and prove pumping lemma for regular set, also show that $L=\left\{a^{p / p}\right.$ is a prime $\}$ is not regular.
[Contd...

3 Attempt any two parts of the following : $\quad \mathbf{2} \times \mathbf{1 0}=\mathbf{2 0}$
(a) Describe both the lemmas used to convert a Context Free Grammar into Greibach Normal Form.
(b) Convert the given CFG into Chomsky Normal Form (CNF) :
$S \rightarrow A B / a B$
$A \rightarrow a a b / \in$
$B \rightarrow b b A$
(c) Find the reduced grammar equivalent to the grammar G whose productions are :

$$
\begin{aligned}
& S \rightarrow A B / C A \\
& B \rightarrow B C / A B \\
& A \rightarrow a \\
& C \rightarrow a B / b
\end{aligned}
$$

4 Attempt any two parts of the following : $\quad \mathbf{2} \times \mathbf{1 0}=\mathbf{2 0}$
(a) Consider the language of all balanced strings involving two types of brackets : \{ \} and [].
Construct the PDA for the above language.
(b) Construct the PDA for :
$\left\{W W^{T} / W \in(a+b) *\right\}$.
(c) Consider the given
$P D A: M=(\{q 0\},\{0,1\},\{a, b, Z 0\}, \delta, q 0, Z 0, \phi)$
Where δ is defined as follows :

$$
\begin{aligned}
& \delta\left(q_{0}, 0, Z_{0}\right)=\left\{\left(q_{0}, a Z_{0}\right)\right\} \\
& \delta\left(q_{0}, 1, Z_{0}\right)=\left\{\left(q_{0}, b Z_{0}\right)\right\} \\
& \delta\left(q_{0}, 1, b\right)=\left\{\left(q_{0}, b b\right)\right\} \\
& \delta\left(q_{0}, \in, Z_{0}\right)=\left\{\left(q_{0}, \epsilon\right)\right\}
\end{aligned}
$$

Convert the given PDA M to corresponding CFG.

5 Attempt any two parts of the following : $2 \times 10=\mathbf{2 0}$
(a) Write post correspondence problem. Differentiate it with modified PCP. Does the PCP with two lists $x=(1,10,1011)$ and $y=(111,101,10101)$ have a solution. Explain.
(b) What is recursive and recursive enumerable languages ? Prove that L is recursive iff L and its complement L^{1} are both Recursive Enumerable ?
(c) Design a Turing Machine for

$$
L=\left\{a^{i} b^{i} / i>=1\right\} .
$$

