

B.Tech.

(SEM. VII) THEORY EXAMINATION, 2015-16

BRIDGE ENGINEERING

[Time:3 hours]

[Total Marks:100]

Note: This question paper contain three section. Attempt all sections. Assume any missing data suitable.

Section-A

- 1. All parts are compulsory. $(2 \times 10 = 20)$
 - (a) Discuss the various types of abutments.
 - (b) What is a well foundation? What are its different types?
 - (c) List the loads to be considered in the design of plate girder bridge.
 - (d) Describe box culverts & draw sketch.
 - (e) What are the causes for longitudinal forces on bridges.
 - (f) Explain essential requirements of a good foundations.
 - (g) Describe the usual type of bridge piers.

(1)

P.T.O.

- (h) Discuss the different loading causes for the design of a single rent R.C. box culvert.
- (i) Define the following terms:
 - (a) Abutment
 - (b) Back fill
- (j) What is a bridge? What is the importance of studying bridge engineering.

Section-B

Attempt any five questions.

(5×10=50)

2. Design a R.C. slab culvert for a national highway to suit following data:

Carriage way:	Two lane 7.5 m wide	
Footpath:	0.9 m on either side	
Clear span:	5m	
Wearing coat:	75mm	
Width of bearing :	500mm	
Materials:	M25 grade concrete: Fe 415	
Loading:	IRC Class AA tracked	
	venicle	

Design the R.C. slab deck and sketch the details of the reinforcement in cross section of a slab.

(2)

- 3. Design a reinforced concrete box culvert having a clear ventory of 4m×4m. The superimposed dead load on the culvert is 12.8 kN/m². The L.L on the culvert is 60 kN/m². Density of soil at site is 18 kN/m³. Angle of repose=30°. Adopt M20 grade concrete mix and Fe 415 grade for steel. Sketch the details of reinforcement in the box culvert.
- 4. What essential data is required for the design of a bridge.
- 5. What are R.C.C bridges. Explain any five of them with neat sketches.
- 6. Using the following particulars to design a plate girder bridge for a broad gage track.

Span:20m.

Top level of the railway embankment		1.15m
Bed level of the stream	:	120m
Ground level suitable for foundation:	:	98m
Stream bund top level	:101.50m.	

7. Sketch the elements of plate girder bridge.

8. The foundation for substructure of a bridge consist of 16 piles to carry a total load of 8000 kn. The piles are spaced at 1.5 m k. They are driven through soft ground to a hard straitum available at a depth of 12m. Design the pile foundation using M-20 coecrete & Fe 415 steel.

(3)

Section-C

Attempt any two questions.

(15x2=30)

- 9. A reaction of 3000 kN is expected at a support of 25 m spaned T-beam bridge. Design a rocker & roller bearing. The details are allowable pressure on roller:5N/mm diameter/mm length. Bearing pressure on rocker pin=30N/mm². Allowable pressure on concrete bed block =3.8N/mm².
- 10. What is a bridge foundation? Explain it with neat sketch.What are the various functions & type of foundation.
- 11. Verify the stability of the abutment shown in fig. The other salient details are given below:

Material of the abutment : Cancrete

Line load on the bridge : IRC Class AA (Tracked)

Density of soil = 18kN/m³

Angle of repose= 30°

500

Coefficient of friction =0.5

