Printed Pages: 5	742	ECE-702						
(Following Paper ID and Roll No. to be filled in your Answer Book)								
Paper 1D = 100702	Roll No.							
	B.Tech.							

(SEM. VII) THEORY EXAMINATION, 2015-16

WATER RESOURCE ENGINEERING

[Time:3 hours]

[Total Marks:100]

SECTION-A

- Attempt all question. All questions carry equal marks.: 1. $(2 \times 10 = 20)$
 - State various Components of a single peaked (a) hydrograph.
 - Explain Hydrological system. (b)
 - Differentiate between PET & AET. (c)
 - Explain W & ϕ index. (d)
 - State various types of Precipitation. (e)
 - List methods of computing runoff from a (f) catchment..

P.T.O.

- (g) List various methods of Irrigation.
- (h) Explain well losses and well shrouding.
- (i) Explain synthetic and s hydrograph.
- j) What are the various methods of Well development?

SECTION-B

Attempt any five of the following.

 $(10 \times 5 = 50)$

- 2. What is the concept of river training? Explain river training for discharge, depths and sediments. List various types of river training works.
- 3. What are the various factors governing the selection of suitable site of a Tube-well?
- 4. Differentiate between Kennedy's and Lacey's theory for design of alluvium channels. Explain defects in Lacey's theory.
- 5. Design a channel section using Kennedy's theory for a discharge of 45 cumecs. take Kutter's coefficient, N=0.0225, C.V.R.M=1.05, side slope=0.5H:1V, Bed slope=1in 5000.
- 6. Write short notes on L-section and X-section of a canal, Garret's diagram, initial and final regime of a channel, aquifer and porosity.

- 7. Calculate the number of days after which the water has to be supplied to the soil in order to ensure sufficient irrigation if:
 - i Field capacity of the soil is 28%.
 - ii. Permanent wilting point is 13%.
 - iii. Dry density of soil is 1.3gm/cc.
 - iv. Effective depth of root zone is 70cm.
 - v. Daily consumptive use of water for given crop is 12mm. Assume optimum soil moisture as 80% of available moisture.
- 8. The Base period, Duty at the field and the Area under the crop under a Distributory taking off from a reservoir are given in table below. Taking canal losses as 10% and reservoir losses as 15%, compute the reservoir capacity.

CROP	BASE PERIOD (days)	DUTY AT THE FIELD (ha/cumecs)	AREA UNDER THE CROP (ha)
Bajri	120	2000	1500
Cotton	200	1400	1400
Rice	120	900	4000
Wheat	120	1800	6800

- 9. (i) What is an Outlet? Explain various types of outlets with examples and stetches.
 - (ii) What are various regulation works in canals? Explain about the location of falls and various types of falls.

SECTION-C

Attempt any two parts.

13200

 $(15 \times 2 = 30)$

- 10. (i) Explain water logging and its causes. Explain adverse effects of water logging. What are the various methods adopted as Anti water logging measures.
 - (ii) Using Lacey's theory, design an irrigation channel for the following data:

Discharge, Q=50m³/sec

Lacey's silt factor, f=1.1

Trapezoidal section

Side slope=0.5h:1V

11. Describe an expression for the yield of Tube-wells for the case of an unconfined aquifer two tube-wells each of 20cm diameter and spaced at 100m distance penetrate fully a confined aquifer of 12m thickniss. Calculate the discharge if only one well is discharging under a depression head of 3m. What will be the percentage decrease in the discharge of the well it both the wells are discharging under the same depression head of 3m?

Take R=250m for each well and k=60m/day.

12. (i) Following are the storms hydrograph ordinates of a river draining a catchment area of 425km² due to 6hr isolated storm. derive the ordinate of a 6hr unit hydrograph for the catchment.

Time(hr)	-6	0	6	12	18	24	30	36	42
	10	10	30	87.5	.115=	102	86	71	59
U.C. 13. 0- (1110) 30 37		L	L	L					

48	54	60	66	72.	78	84	90	96	102
 47	40	32	28	21	17	15	12	12	12
 	<u> </u>	L							

(ii) Design a conceate lined channel to carry a discharge of 200 cumecs with bed slope of 1 in 4000. The side slope is 2H:1V and manning's coefficient, n=0.014. The limiting velocity in the canal is 2m/sec.