Printed Pages: 4	310	EEE-701				
(Following Paper ID and Roll No. to be filled in your Answer Book)						
Paper ID :121701	Roll No.					
	R.Tech					

(SEM. VII) THEORY EXAMINATION, 2015-16 SWITCH GEAR & PROTECTION

[Time:3 hours]

[MaximumMarks:100

Section-A

- Q1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(2 \times 10 = 20)$
 - How induction cup type construction is superior (a) to induction disc type?
 - What is the need of relay coordination? (b)
 - (c) What is Buchholz relay? For what type of fault it is employed?
 - (d) Why directional feature provided for impedance relay cannot be used for reactance relay?
 - Why bus bar protection is important in power (e) system?
 - (f) What factors govern choosing pilot-wire installation?
 - Why are circuit breakers designed to have a short-(g)

time rating?

- (h) State the formula for RRRV. At what instant its value is maximum?
- (i) Why current chopping is not common in Oil circuit breaker?
- (j) For a 132 kV system, the reactance and capacitance up to the location of the circuit breaker is 3 z and 0.015 p F respectively. Calculate the maximum value of RRRV.

Section-B

Note: Attempt any five parts of the following: $5 \times 10 = 50$

- Q2. What is a zone of protection? Discuss various zones of protection of a power system with the help of line diagram.
- Q3. Describe in detail the synthesis of a Mho relay using static phase comparator.
- Q4. Explain what is meant by transient overreach as applied to high set instantaneous overcurrent relay. What measures are taken to overcome these difficulties?
- Q5. Write a detail note on pilot wire protection of a transmission line.
- Q6. What is carrier current protection? For what voltage range is it used for the protection of transmission lines? With neat sketches discuss the phase comparison scheme

EEE-701

+5,

of carrier current protection?

- Q7. Explain the Arc phenomenon in Circuit breaker.
- Q8. With a help of neat block diagram, explain the construction, operating principle and advantages of SF₆ circuit breaker.
- Q9. With a neat sheematic diagram explain the protection of transformer with differential protection scheme.

Section-C

Note: Attempt any two part. Each part carries equal marks.

$$(15 \times 2 = 30)$$

Q10. (a) The current rating of an overcurrent relay is 5 A. PSM=2, TMS=0.3, CT ratio=400/5, Fault current=4000 A. determine the operating time of the relay. At TMS=1, operating time at various PSM are:

PSIM	2	4	5	8	10	20
Operating time (sec)	10	5	4	3	2.8	2.4

- (b) What are the desing considerations in electromagnetic relay?
- Q11. Give the construction features, principle of working & characteristics of a directional over-current relay. What do you understand by IDMT relay? Draw the typical characteristics of an IDMT relay.

- Q12. (a) Describe the operating principle of DC circuit breaker.
 - (b) Draw the current and voltage waveforms showing AC circuit breaking phenomenon. Show the following in the diagram and describe them:
 - (i) Major current loop
 - (ii) System voltage
 - (iii) Arc voltage
 - (iv) Restrikingvoltage
 - (v) Active recovery voltage
 - (vi) Recovery voltage.

EEE-701