Printed Pages: 03					Subject Code: NCE701/ ECE701							
Paper	Id:	100701		Roll No:								
	L		B	ТЕСН								
			(SEM-VII) THEORY	EXAMIN	ATI	ON 2	018- 1	19				
			DESIGN OF	F STEEL S	TRU	CTU	RES					
Time:	3 Hot	urs							Ta	otal M	larks:	100
Note: 1	.Atten	npt all Secti	ons. If require any missing	ng data; then	choo	ose sui	tably.					
2	2. IS 8	00:2007 orig	ginal copy is allowed. Us	se of steel tal	ole is	allow	ed.					
3	3. Assu	ume any mis	sing data suitably if requ	iired.								
				SECTION	A							
1. At	tempt	t <i>all</i> questio	ns in brief :							2 X 1	0 = 20	
a)	Disti	nguish betw	een: factor of safety and	partial safet	y fact	or.						
b)	List t	he disadvan	tages of steel as a structu	ral material.								
c)	What does 4 and 6 imply for bolts of grade 4.6.											
d)	Why fillet welds are preferred over butt welds.											
e)	What is shear lag effect?											
f)	What	t is lug angle	ð.			.0						
g)	What do you understand by inelastic buckling?											
h)	Defir	ne effective	length of column.		$\langle \rangle$	7						
i)	Why is an I- section commonly used as a beam member even though its lateral buckling											
	streng	gth is low?		0								S
j)	What	t is the main	purpose of a gantry gird	er?							0	X
											\mathcal{L}^{\prime}	
			SE	CTION B						1	5	
										$\sqrt{\cdot}$		
2.	A	Attempt any	<i>three</i> of the following:						N	10	$\mathbf{X} 3 = 1$	30
			15									
a)			ain curve for mild steel a			-		\sim				
b)	Design a lap joint between two plates as shown in fig below so as to transmit a factored load of						ıd of					
	70 kN	Vusing M16	bolts of grade 4.6 and g	rade 410 pla	tes.	0	Ŋ.					

<		→ 12 mm 20 mm ↑
70 kN ←	0 0 0	80 mm
	+ 30 ⁺ + 40 ⁺ + 30 ⁺	

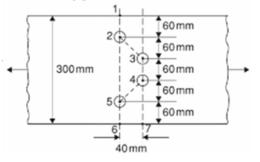
- d) Design a column to support a factored load of 1050 kN.The column has an effective length of 7.0 m with respect to Z -axis and 5.0 m with respect to y-axis .Use steel of grade Fe 410.
- e) Design a simply supported beam of span 5m carrying a reinforced concrete floor capable of providing lateral restraint to the top compression flange. The uniformly distributed load is made up of 20 kN/m imposed load and 20 kN/m dead load(section is stiff against bearing).assume Fe 410 grade steel.

SECTION C

3. Attempt any one part of the following:

- a) List various loads that may act on steel structures. Describe the environmental load briefly.
- b) Distinguish between the working stress methods, ultimate strength design and limit state design.

4. Attempt any one part of the following:

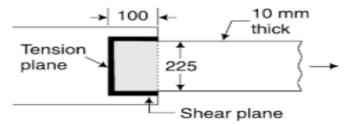

> A tie member consisting of an ISA 80mm X 50mmX8 mm (Fe 410 grade steel) is a) 7.55.243.94 welded to a 12 mm thick gusset plate at site.Design welds to transmit load equal to the design strength of the member.

Attempt any one part of the following:

5.

a) Determine the minimum net area of cross section of 300 X 12 mm as shown in figure below .The holes are of diameter 17.5 mm.

Pitch (p) = 40 mmGauge (g) = 60 mm


$10 \ge 1 = 10$

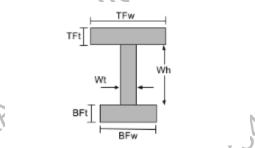
 $10 \ge 1 = 10$

b) Two plates' 10-mm and 18-mm thick are to be joined by a double cover butt joint Assuming cover plates of 8-mm thickness. Design the joint the joint to transmit a

$10 \ge 1 = 10$

b) Determine the block shear strength of the welded tension member shown below .grade of steel is Fe 410.

6. Attempt any *one* part of the following:


$10 \ge 1 = 10$

 $10 \ge 1 = 10$

- a) Calculate the design compressive load for a column made up of ISHB 350@710.2 N/m and 3.5 m high. The column is restrained in direction and position at both the ends. Use steel of grade Fe-410.
- b) Design a slab base for a column ISHB 350 @ 710.2 N/m subjected to a factored axial load of 1500 kN.The column end and base is machined and grade of concrete used is M-20.

7. Attempt any *one* part of the following:

- a) A simply supported steel joist of 4.0 m effective span is laterally supported throughout .it carries a total uniformly distributed load of 40 kN (inclusive self-weight).design an appropriate section using steel of grade Fe 410.
- b) Determine the plastic moment capacity and plastic modulus of section of the unsymmetric section shown below

TFw=100mm, TFt=10mm, BFw=200mm, BFt=10mm, Wh=180mm, Wt=10mm All dimensions are in mm.

		~	20
	- 0	C V	
1	X	/	